MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  israg Structured version   Visualization version   GIF version

Theorem israg 25592
Description: Property for 3 points A, B, C to form a right angle. Definition 8.1 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
Assertion
Ref Expression
israg (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))

Proof of Theorem israg
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 israg.a . . . 4 (𝜑𝐴𝑃)
2 israg.b . . . 4 (𝜑𝐵𝑃)
3 israg.c . . . 4 (𝜑𝐶𝑃)
41, 2, 3s3cld 13617 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
5 fveq2 6191 . . . . . 6 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (#‘𝑤) = (#‘⟨“𝐴𝐵𝐶”⟩))
65eqeq1d 2624 . . . . 5 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((#‘𝑤) = 3 ↔ (#‘⟨“𝐴𝐵𝐶”⟩) = 3))
7 fveq1 6190 . . . . . . 7 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
8 fveq1 6190 . . . . . . 7 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
97, 8oveq12d 6668 . . . . . 6 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑤‘0) (𝑤‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)))
10 fveq1 6190 . . . . . . . . 9 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
1110fveq2d 6195 . . . . . . . 8 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑆‘(𝑤‘1)) = (𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1)))
1211, 8fveq12d 6197 . . . . . . 7 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑆‘(𝑤‘1))‘(𝑤‘2)) = ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))
137, 12oveq12d 6668 . . . . . 6 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))
149, 13eqeq12d 2637 . . . . 5 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))))
156, 14anbi12d 747 . . . 4 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (((#‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2)))) ↔ ((#‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
1615elrab3 3364 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ Word 𝑃 ∣ ((#‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ↔ ((#‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
174, 16syl 17 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ Word 𝑃 ∣ ((#‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ↔ ((#‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
18 df-rag 25589 . . . . 5 ∟G = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((#‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))})
1918a1i 11 . . . 4 (𝜑 → ∟G = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((#‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))}))
20 simpr 477 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
2120fveq2d 6195 . . . . . . 7 ((𝜑𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺))
22 israg.p . . . . . . 7 𝑃 = (Base‘𝐺)
2321, 22syl6eqr 2674 . . . . . 6 ((𝜑𝑔 = 𝐺) → (Base‘𝑔) = 𝑃)
24 wrdeq 13327 . . . . . 6 ((Base‘𝑔) = 𝑃 → Word (Base‘𝑔) = Word 𝑃)
2523, 24syl 17 . . . . 5 ((𝜑𝑔 = 𝐺) → Word (Base‘𝑔) = Word 𝑃)
2620fveq2d 6195 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → (dist‘𝑔) = (dist‘𝐺))
27 israg.d . . . . . . . . 9 = (dist‘𝐺)
2826, 27syl6eqr 2674 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (dist‘𝑔) = )
2928oveqd 6667 . . . . . . 7 ((𝜑𝑔 = 𝐺) → ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0) (𝑤‘2)))
30 eqidd 2623 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (𝑤‘0) = (𝑤‘0))
3120fveq2d 6195 . . . . . . . . . . 11 ((𝜑𝑔 = 𝐺) → (pInvG‘𝑔) = (pInvG‘𝐺))
32 israg.s . . . . . . . . . . 11 𝑆 = (pInvG‘𝐺)
3331, 32syl6eqr 2674 . . . . . . . . . 10 ((𝜑𝑔 = 𝐺) → (pInvG‘𝑔) = 𝑆)
3433fveq1d 6193 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → ((pInvG‘𝑔)‘(𝑤‘1)) = (𝑆‘(𝑤‘1)))
3534fveq1d 6193 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)) = ((𝑆‘(𝑤‘1))‘(𝑤‘2)))
3628, 30, 35oveq123d 6671 . . . . . . 7 ((𝜑𝑔 = 𝐺) → ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))
3729, 36eqeq12d 2637 . . . . . 6 ((𝜑𝑔 = 𝐺) → (((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) ↔ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2)))))
3837anbi2d 740 . . . . 5 ((𝜑𝑔 = 𝐺) → (((#‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)))) ↔ ((#‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))))
3925, 38rabeqbidv 3195 . . . 4 ((𝜑𝑔 = 𝐺) → {𝑤 ∈ Word (Base‘𝑔) ∣ ((#‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))} = {𝑤 ∈ Word 𝑃 ∣ ((#‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))})
40 israg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
4140elexd 3214 . . . 4 (𝜑𝐺 ∈ V)
42 fvex 6201 . . . . . . . 8 (Base‘𝐺) ∈ V
4322, 42eqeltri 2697 . . . . . . 7 𝑃 ∈ V
44 wrdexg 13315 . . . . . . 7 (𝑃 ∈ V → Word 𝑃 ∈ V)
4543, 44ax-mp 5 . . . . . 6 Word 𝑃 ∈ V
4645rabex 4813 . . . . 5 {𝑤 ∈ Word 𝑃 ∣ ((#‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ∈ V
4746a1i 11 . . . 4 (𝜑 → {𝑤 ∈ Word 𝑃 ∣ ((#‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ∈ V)
4819, 39, 41, 47fvmptd 6288 . . 3 (𝜑 → (∟G‘𝐺) = {𝑤 ∈ Word 𝑃 ∣ ((#‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))})
4948eleq2d 2687 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ Word 𝑃 ∣ ((#‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))}))
50 s3fv0 13636 . . . . . . 7 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
511, 50syl 17 . . . . . 6 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
5251eqcomd 2628 . . . . 5 (𝜑𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0))
53 s3fv2 13638 . . . . . . 7 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
543, 53syl 17 . . . . . 6 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
5554eqcomd 2628 . . . . 5 (𝜑𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))
5652, 55oveq12d 6668 . . . 4 (𝜑 → (𝐴 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)))
57 s3fv1 13637 . . . . . . . . 9 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
582, 57syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
5958eqcomd 2628 . . . . . . 7 (𝜑𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
6059fveq2d 6195 . . . . . 6 (𝜑 → (𝑆𝐵) = (𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1)))
6160, 55fveq12d 6197 . . . . 5 (𝜑 → ((𝑆𝐵)‘𝐶) = ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))
6252, 61oveq12d 6668 . . . 4 (𝜑 → (𝐴 ((𝑆𝐵)‘𝐶)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))
6356, 62eqeq12d 2637 . . 3 (𝜑 → ((𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))))
64 s3len 13639 . . . . 5 (#‘⟨“𝐴𝐵𝐶”⟩) = 3
6564a1i 11 . . . 4 (𝜑 → (#‘⟨“𝐴𝐵𝐶”⟩) = 3)
6665biantrurd 529 . . 3 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))) ↔ ((#‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
6763, 66bitrd 268 . 2 (𝜑 → ((𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)) ↔ ((#‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
6817, 49, 673bitr4d 300 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cmpt 4729  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937  2c2 11070  3c3 11071  #chash 13117  Word cword 13291  ⟨“cs3 13587  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547  ∟Gcrag 25588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-rag 25589
This theorem is referenced by:  ragcom  25593  ragcol  25594  ragmir  25595  mirrag  25596  ragtrivb  25597  ragflat2  25598  ragflat  25599  ragcgr  25602  footex  25613  colperpexlem1  25622  colperpexlem3  25624  mideulem2  25626  opphllem  25627  lmiisolem  25688  hypcgrlem1  25691  hypcgrlem2  25692  trgcopyeulem  25697
  Copyright terms: Public domain W3C validator