MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeqa Structured version   Visualization version   GIF version

Theorem itgeqa 23580
Description: Approximate equality of integrals. If 𝐶(𝑥) = 𝐷(𝑥) for almost all 𝑥, then 𝐵𝐶(𝑥) d𝑥 = ∫𝐵𝐷(𝑥) d𝑥 and one is integrable iff the other is. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgeqa.1 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
itgeqa.2 ((𝜑𝑥𝐵) → 𝐷 ∈ ℂ)
itgeqa.3 (𝜑𝐴 ⊆ ℝ)
itgeqa.4 (𝜑 → (vol*‘𝐴) = 0)
itgeqa.5 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
Assertion
Ref Expression
itgeqa (𝜑 → (((𝑥𝐵𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐷) ∈ 𝐿1) ∧ ∫𝐵𝐶 d𝑥 = ∫𝐵𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem itgeqa
Dummy variables 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgeqa.3 . . . . 5 (𝜑𝐴 ⊆ ℝ)
2 itgeqa.4 . . . . 5 (𝜑 → (vol*‘𝐴) = 0)
3 itgeqa.5 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
4 itgeqa.1 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
5 itgeqa.2 . . . . 5 ((𝜑𝑥𝐵) → 𝐷 ∈ ℂ)
61, 2, 3, 4, 5mbfeqa 23410 . . . 4 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ↔ (𝑥𝐵𝐷) ∈ MblFn))
7 ifan 4134 . . . . . . . . . 10 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
84adantlr 751 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 𝐶 ∈ ℂ)
9 elfzelz 12342 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
109ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 𝑘 ∈ ℤ)
11 ax-icn 9995 . . . . . . . . . . . . . . . . . 18 i ∈ ℂ
12 ine0 10465 . . . . . . . . . . . . . . . . . 18 i ≠ 0
13 expclz 12885 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
1411, 12, 13mp3an12 1414 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
1510, 14syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (i↑𝑘) ∈ ℂ)
16 expne0i 12892 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
1711, 12, 16mp3an12 1414 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
1810, 17syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (i↑𝑘) ≠ 0)
198, 15, 18divcld 10801 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) ∈ ℂ)
2019recld 13934 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ)
21 0re 10040 . . . . . . . . . . . . . 14 0 ∈ ℝ
22 ifcl 4130 . . . . . . . . . . . . . 14 (((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ)
2320, 21, 22sylancl 694 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ)
2423rexrd 10089 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ*)
25 max1 12016 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2621, 20, 25sylancr 695 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
27 elxrge0 12281 . . . . . . . . . . . 12 (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
2824, 26, 27sylanbrc 698 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
29 0e0iccpnf 12283 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
3029a1i 11 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
3128, 30ifclda 4120 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
327, 31syl5eqel 2705 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
3332adantr 481 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
34 eqid 2622 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3533, 34fmptd 6385 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
36 ifan 4134 . . . . . . . . . 10 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0), 0)
375adantlr 751 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 𝐷 ∈ ℂ)
3837, 15, 18divcld 10801 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (𝐷 / (i↑𝑘)) ∈ ℂ)
3938recld 13934 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (ℜ‘(𝐷 / (i↑𝑘))) ∈ ℝ)
40 ifcl 4130 . . . . . . . . . . . . . 14 (((ℜ‘(𝐷 / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ ℝ)
4139, 21, 40sylancl 694 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ ℝ)
4241rexrd 10089 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ ℝ*)
43 max1 12016 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (ℜ‘(𝐷 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
4421, 39, 43sylancr 695 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 0 ≤ if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
45 elxrge0 12281 . . . . . . . . . . . 12 (if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))
4642, 44, 45sylanbrc 698 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ (0[,]+∞))
4746, 30ifclda 4120 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
4836, 47syl5eqel 2705 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ (0[,]+∞))
4948adantr 481 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ (0[,]+∞))
50 eqid 2622 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
5149, 50fmptd 6385 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
521adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → 𝐴 ⊆ ℝ)
532adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (vol*‘𝐴) = 0)
54 simpll 790 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → 𝜑)
55 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → 𝑥𝐵)
56 eldifn 3733 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
5756ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
5855, 57eldifd 3585 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐵𝐴))
5954, 58, 3syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → 𝐶 = 𝐷)
6059oveq1d 6665 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) = (𝐷 / (i↑𝑘)))
6160fveq2d 6195 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘))))
6261ibllem 23531 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
63 eldifi 3732 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ)
6463adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 𝑥 ∈ ℝ)
65 fvex 6201 . . . . . . . . . . . . . 14 (ℜ‘(𝐶 / (i↑𝑘))) ∈ V
66 c0ex 10034 . . . . . . . . . . . . . 14 0 ∈ V
6765, 66ifex 4156 . . . . . . . . . . . . 13 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ V
6834fvmpt2 6291 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
6964, 67, 68sylancl 694 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
70 fvex 6201 . . . . . . . . . . . . . 14 (ℜ‘(𝐷 / (i↑𝑘))) ∈ V
7170, 66ifex 4156 . . . . . . . . . . . . 13 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ V
7250fvmpt2 6291 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
7364, 71, 72sylancl 694 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
7462, 69, 733eqtr4d 2666 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥))
7574ralrimiva 2966 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (ℝ ∖ 𝐴)((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥))
76 nfv 1843 . . . . . . . . . . 11 𝑦((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥)
77 nffvmpt1 6199 . . . . . . . . . . . 12 𝑥((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦)
78 nffvmpt1 6199 . . . . . . . . . . . 12 𝑥((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦)
7977, 78nfeq 2776 . . . . . . . . . . 11 𝑥((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦)
80 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦))
81 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8280, 81eqeq12d 2637 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) ↔ ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦)))
8376, 79, 82cbvral 3167 . . . . . . . . . 10 (∀𝑥 ∈ (ℝ ∖ 𝐴)((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) ↔ ∀𝑦 ∈ (ℝ ∖ 𝐴)((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8475, 83sylib 208 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ (ℝ ∖ 𝐴)((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8584r19.21bi 2932 . . . . . . . 8 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8685adantlr 751 . . . . . . 7 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑦 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8735, 51, 52, 53, 86itg2eqa 23512 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))))
8887eleq1d 2686 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) ∈ ℝ))
8988ralbidva 2985 . . . 4 (𝜑 → (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ ↔ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) ∈ ℝ))
906, 89anbi12d 747 . . 3 (𝜑 → (((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) ↔ ((𝑥𝐵𝐷) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) ∈ ℝ)))
91 eqidd 2623 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
92 eqidd 2623 . . . 4 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
9391, 92, 4isibl2 23533 . . 3 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
94 eqidd 2623 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))
95 eqidd 2623 . . . 4 ((𝜑𝑥𝐵) → (ℜ‘(𝐷 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘))))
9694, 95, 5isibl2 23533 . . 3 (𝜑 → ((𝑥𝐵𝐷) ∈ 𝐿1 ↔ ((𝑥𝐵𝐷) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) ∈ ℝ)))
9790, 93, 963bitr4d 300 . 2 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐷) ∈ 𝐿1))
9887oveq2d 6666 . . . 4 ((𝜑𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))))
9998sumeq2dv 14433 . . 3 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))))
100 eqid 2622 . . . 4 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
101100dfitg 23536 . . 3 𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
102 eqid 2622 . . . 4 (ℜ‘(𝐷 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘)))
103102dfitg 23536 . . 3 𝐵𝐷 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))))
10499, 101, 1033eqtr4g 2681 . 2 (𝜑 → ∫𝐵𝐶 d𝑥 = ∫𝐵𝐷 d𝑥)
10597, 104jca 554 1 (𝜑 → (((𝑥𝐵𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐷) ∈ 𝐿1) ∧ ∫𝐵𝐶 d𝑥 = ∫𝐵𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  ici 9938   · cmul 9941  +∞cpnf 10071  *cxr 10073  cle 10075   / cdiv 10684  3c3 11071  cz 11377  [,]cicc 12178  ...cfz 12326  cexp 12860  cre 13837  Σcsu 14416  vol*covol 23231  MblFncmbf 23383  2citg2 23385  𝐿1cibl 23386  citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392
This theorem is referenced by:  itgss3  23581
  Copyright terms: Public domain W3C validator