![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem33 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 36874. (Contributed by NM, 10-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) |
lcfrlem30.m | ⊢ − = (-g‘𝐷) |
lcfrlem30.c | ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
lcfrlem33.xi | ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) = 𝑄) |
Ref | Expression |
---|---|
lcfrlem33 | ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem30.c | . . 3 ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
2 | lcfrlem33.xi | . . . . . . . . 9 ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) = 𝑄) | |
3 | 2 | oveq2d 6666 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) = ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)𝑄)) |
4 | lcfrlem17.h | . . . . . . . . . . 11 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | lcfrlem17.u | . . . . . . . . . . 11 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | lcfrlem17.k | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 4, 5, 6 | dvhlmod 36399 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ LMod) |
8 | lcfrlem24.s | . . . . . . . . . . 11 ⊢ 𝑆 = (Scalar‘𝑈) | |
9 | 8 | lmodring 18871 | . . . . . . . . . 10 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
10 | 7, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ Ring) |
11 | 4, 5, 6 | dvhlvec 36398 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LVec) |
12 | 8 | lvecdrng 19105 | . . . . . . . . . . 11 ⊢ (𝑈 ∈ LVec → 𝑆 ∈ DivRing) |
13 | 11, 12 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
14 | lcfrlem17.o | . . . . . . . . . . . 12 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
15 | lcfrlem17.v | . . . . . . . . . . . 12 ⊢ 𝑉 = (Base‘𝑈) | |
16 | lcfrlem17.p | . . . . . . . . . . . 12 ⊢ + = (+g‘𝑈) | |
17 | lcfrlem24.t | . . . . . . . . . . . 12 ⊢ · = ( ·𝑠 ‘𝑈) | |
18 | lcfrlem24.r | . . . . . . . . . . . 12 ⊢ 𝑅 = (Base‘𝑆) | |
19 | lcfrlem17.z | . . . . . . . . . . . 12 ⊢ 0 = (0g‘𝑈) | |
20 | eqid 2622 | . . . . . . . . . . . 12 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
21 | lcfrlem24.l | . . . . . . . . . . . 12 ⊢ 𝐿 = (LKer‘𝑈) | |
22 | lcfrlem25.d | . . . . . . . . . . . 12 ⊢ 𝐷 = (LDual‘𝑈) | |
23 | eqid 2622 | . . . . . . . . . . . 12 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
24 | eqid 2622 | . . . . . . . . . . . 12 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
25 | lcfrlem24.j | . . . . . . . . . . . 12 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
26 | lcfrlem17.y | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
27 | 4, 14, 5, 15, 16, 17, 8, 18, 19, 20, 21, 22, 23, 24, 25, 6, 26 | lcfrlem10 36841 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐽‘𝑌) ∈ (LFnl‘𝑈)) |
28 | lcfrlem17.a | . . . . . . . . . . . . 13 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
29 | lcfrlem17.n | . . . . . . . . . . . . . 14 ⊢ 𝑁 = (LSpan‘𝑈) | |
30 | lcfrlem17.x | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
31 | lcfrlem17.ne | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
32 | lcfrlem22.b | . . . . . . . . . . . . . 14 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
33 | 4, 14, 5, 15, 16, 19, 29, 28, 6, 30, 26, 31, 32 | lcfrlem22 36853 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
34 | 15, 28, 7, 33 | lsatssv 34285 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 ⊆ 𝑉) |
35 | lcfrlem24.ib | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
36 | 34, 35 | sseldd 3604 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
37 | 8, 18, 15, 20 | lflcl 34351 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ (𝐽‘𝑌) ∈ (LFnl‘𝑈) ∧ 𝐼 ∈ 𝑉) → ((𝐽‘𝑌)‘𝐼) ∈ 𝑅) |
38 | 7, 27, 36, 37 | syl3anc 1326 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ∈ 𝑅) |
39 | lcfrlem28.jn | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
40 | lcfrlem24.q | . . . . . . . . . . 11 ⊢ 𝑄 = (0g‘𝑆) | |
41 | lcfrlem29.i | . . . . . . . . . . 11 ⊢ 𝐹 = (invr‘𝑆) | |
42 | 18, 40, 41 | drnginvrcl 18764 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ DivRing ∧ ((𝐽‘𝑌)‘𝐼) ∈ 𝑅 ∧ ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) → (𝐹‘((𝐽‘𝑌)‘𝐼)) ∈ 𝑅) |
43 | 13, 38, 39, 42 | syl3anc 1326 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘((𝐽‘𝑌)‘𝐼)) ∈ 𝑅) |
44 | eqid 2622 | . . . . . . . . . 10 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
45 | 18, 44, 40 | ringrz 18588 | . . . . . . . . 9 ⊢ ((𝑆 ∈ Ring ∧ (𝐹‘((𝐽‘𝑌)‘𝐼)) ∈ 𝑅) → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)𝑄) = 𝑄) |
46 | 10, 43, 45 | syl2anc 693 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)𝑄) = 𝑄) |
47 | 3, 46 | eqtrd 2656 | . . . . . . 7 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) = 𝑄) |
48 | 47 | oveq1d 6665 | . . . . . 6 ⊢ (𝜑 → (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌)) = (𝑄( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
49 | eqid 2622 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
50 | 20, 8, 40, 22, 49, 23, 7, 27 | ldual0vs 34447 | . . . . . 6 ⊢ (𝜑 → (𝑄( ·𝑠 ‘𝐷)(𝐽‘𝑌)) = (0g‘𝐷)) |
51 | 48, 50 | eqtrd 2656 | . . . . 5 ⊢ (𝜑 → (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌)) = (0g‘𝐷)) |
52 | 51 | oveq2d 6666 | . . . 4 ⊢ (𝜑 → ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) = ((𝐽‘𝑋) − (0g‘𝐷))) |
53 | 22, 7 | ldualgrp 34433 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Grp) |
54 | eqid 2622 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
55 | 4, 14, 5, 15, 16, 17, 8, 18, 19, 20, 21, 22, 23, 24, 25, 6, 30 | lcfrlem10 36841 | . . . . . 6 ⊢ (𝜑 → (𝐽‘𝑋) ∈ (LFnl‘𝑈)) |
56 | 20, 22, 54, 7, 55 | ldualelvbase 34414 | . . . . 5 ⊢ (𝜑 → (𝐽‘𝑋) ∈ (Base‘𝐷)) |
57 | lcfrlem30.m | . . . . . 6 ⊢ − = (-g‘𝐷) | |
58 | 54, 23, 57 | grpsubid1 17500 | . . . . 5 ⊢ ((𝐷 ∈ Grp ∧ (𝐽‘𝑋) ∈ (Base‘𝐷)) → ((𝐽‘𝑋) − (0g‘𝐷)) = (𝐽‘𝑋)) |
59 | 53, 56, 58 | syl2anc 693 | . . . 4 ⊢ (𝜑 → ((𝐽‘𝑋) − (0g‘𝐷)) = (𝐽‘𝑋)) |
60 | 52, 59 | eqtrd 2656 | . . 3 ⊢ (𝜑 → ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) = (𝐽‘𝑋)) |
61 | 1, 60 | syl5eq 2668 | . 2 ⊢ (𝜑 → 𝐶 = (𝐽‘𝑋)) |
62 | 4, 14, 5, 15, 16, 17, 8, 18, 19, 20, 21, 22, 23, 24, 25, 6, 30 | lcfrlem13 36844 | . . 3 ⊢ (𝜑 → (𝐽‘𝑋) ∈ ({𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ∖ {(0g‘𝐷)})) |
63 | eldifsni 4320 | . . 3 ⊢ ((𝐽‘𝑋) ∈ ({𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ∖ {(0g‘𝐷)}) → (𝐽‘𝑋) ≠ (0g‘𝐷)) | |
64 | 62, 63 | syl 17 | . 2 ⊢ (𝜑 → (𝐽‘𝑋) ≠ (0g‘𝐷)) |
65 | 61, 64 | eqnetrd 2861 | 1 ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 {crab 2916 ∖ cdif 3571 ∩ cin 3573 {csn 4177 {cpr 4179 ↦ cmpt 4729 ‘cfv 5888 ℩crio 6610 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 .rcmulr 15942 Scalarcsca 15944 ·𝑠 cvsca 15945 0gc0g 16100 Grpcgrp 17422 -gcsg 17424 Ringcrg 18547 invrcinvr 18671 DivRingcdr 18747 LModclmod 18863 LSpanclspn 18971 LVecclvec 19102 LSAtomsclsa 34261 LFnlclfn 34344 LKerclk 34372 LDualcld 34410 HLchlt 34637 LHypclh 35270 DVecHcdvh 36367 ocHcoch 36636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-mre 16246 df-mrc 16247 df-acs 16249 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-oppg 17776 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lsatoms 34263 df-lshyp 34264 df-lcv 34306 df-lfl 34345 df-lkr 34373 df-ldual 34411 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tgrp 36031 df-tendo 36043 df-edring 36045 df-dveca 36291 df-disoa 36318 df-dvech 36368 df-dib 36428 df-dic 36462 df-dih 36518 df-doch 36637 df-djh 36684 |
This theorem is referenced by: lcfrlem34 36865 |
Copyright terms: Public domain | W3C validator |