Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem37 Structured version   Visualization version   GIF version

Theorem lcfrlem37 36868
Description: Lemma for lcfr 36874. (Contributed by NM, 8-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem28.jn (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
lcfrlem29.i 𝐹 = (invr𝑆)
lcfrlem30.m = (-g𝐷)
lcfrlem30.c 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
lcfrlem37.g (𝜑𝐺 ∈ (LSubSp‘𝐷))
lcfrlem37.gs (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
lcfrlem37.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem37.xe (𝜑𝑋𝐸)
lcfrlem37.ye (𝜑𝑌𝐸)
Assertion
Ref Expression
lcfrlem37 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0   𝑓,𝐽   𝑓,𝐿   ,𝑓   + ,𝑓   𝑅,𝑓   · ,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑋   𝑓,𝑌,𝑘,𝑣,𝑤,𝑥,𝑔   𝐶,𝑔,𝑘   𝐷,𝑔,𝑘   𝑔,𝐺,𝑘   𝑔,𝐼,𝑘   𝑓,𝑔,𝐽,𝑘   𝑔,𝐿,𝑘   ,𝑔   + ,𝑔   𝑄,𝑔,𝑘   𝑈,𝑘   𝑔,𝑉   𝑔,𝑋   𝑔,𝑌   𝜑,𝑔,𝑘   𝑣,𝑔,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓)   𝐴(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓)   𝐷(𝑥,𝑤,𝑣,𝑓)   𝑄(𝑥,𝑤,𝑣,𝑓)   𝑅(𝑤,𝑔)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑔)   · (𝑔)   𝑈(𝑥,𝑤,𝑣,𝑔)   𝐸(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐺(𝑥,𝑤,𝑣,𝑓)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑓)   𝐽(𝑥,𝑤,𝑣)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐿(𝑥,𝑤,𝑣)   (𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   0 (𝑤,𝑣,𝑓,𝑔,𝑘)

Proof of Theorem lcfrlem37
StepHypRef Expression
1 lcfrlem30.c . . . . 5 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
2 lcfrlem25.d . . . . . 6 𝐷 = (LDual‘𝑈)
3 lcfrlem30.m . . . . . 6 = (-g𝐷)
4 eqid 2622 . . . . . 6 (LSubSp‘𝐷) = (LSubSp‘𝐷)
5 lcfrlem17.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 lcfrlem17.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 lcfrlem17.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
85, 6, 7dvhlmod 36399 . . . . . 6 (𝜑𝑈 ∈ LMod)
9 lcfrlem37.g . . . . . 6 (𝜑𝐺 ∈ (LSubSp‘𝐷))
10 lcfrlem17.o . . . . . . 7 = ((ocH‘𝐾)‘𝑊)
11 lcfrlem17.v . . . . . . 7 𝑉 = (Base‘𝑈)
12 lcfrlem17.p . . . . . . 7 + = (+g𝑈)
13 lcfrlem24.t . . . . . . 7 · = ( ·𝑠𝑈)
14 lcfrlem24.s . . . . . . 7 𝑆 = (Scalar‘𝑈)
15 lcfrlem24.r . . . . . . 7 𝑅 = (Base‘𝑆)
16 lcfrlem17.z . . . . . . 7 0 = (0g𝑈)
17 eqid 2622 . . . . . . 7 (LFnl‘𝑈) = (LFnl‘𝑈)
18 lcfrlem24.l . . . . . . 7 𝐿 = (LKer‘𝑈)
19 eqid 2622 . . . . . . 7 (0g𝐷) = (0g𝐷)
20 eqid 2622 . . . . . . 7 {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
21 lcfrlem24.j . . . . . . 7 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
22 lcfrlem37.gs . . . . . . 7 (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
23 lcfrlem37.e . . . . . . 7 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
24 lcfrlem37.xe . . . . . . . 8 (𝜑𝑋𝐸)
25 lcfrlem17.x . . . . . . . . 9 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
26 eldifsni 4320 . . . . . . . . 9 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
2725, 26syl 17 . . . . . . . 8 (𝜑𝑋0 )
28 eldifsn 4317 . . . . . . . 8 (𝑋 ∈ (𝐸 ∖ { 0 }) ↔ (𝑋𝐸𝑋0 ))
2924, 27, 28sylanbrc 698 . . . . . . 7 (𝜑𝑋 ∈ (𝐸 ∖ { 0 }))
305, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 29lcfrlem16 36847 . . . . . 6 (𝜑 → (𝐽𝑋) ∈ 𝐺)
31 eqid 2622 . . . . . . 7 ( ·𝑠𝐷) = ( ·𝑠𝐷)
32 lcfrlem17.n . . . . . . . 8 𝑁 = (LSpan‘𝑈)
33 lcfrlem17.a . . . . . . . 8 𝐴 = (LSAtoms‘𝑈)
34 lcfrlem17.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
35 lcfrlem17.ne . . . . . . . 8 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
36 lcfrlem22.b . . . . . . . 8 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
37 lcfrlem24.q . . . . . . . 8 𝑄 = (0g𝑆)
38 lcfrlem24.ib . . . . . . . 8 (𝜑𝐼𝐵)
39 lcfrlem28.jn . . . . . . . 8 (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
40 lcfrlem29.i . . . . . . . 8 𝐹 = (invr𝑆)
415, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40lcfrlem29 36860 . . . . . . 7 (𝜑 → ((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼)) ∈ 𝑅)
42 lcfrlem37.ye . . . . . . . . 9 (𝜑𝑌𝐸)
43 eldifsni 4320 . . . . . . . . . 10 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
4434, 43syl 17 . . . . . . . . 9 (𝜑𝑌0 )
45 eldifsn 4317 . . . . . . . . 9 (𝑌 ∈ (𝐸 ∖ { 0 }) ↔ (𝑌𝐸𝑌0 ))
4642, 44, 45sylanbrc 698 . . . . . . . 8 (𝜑𝑌 ∈ (𝐸 ∖ { 0 }))
475, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 46lcfrlem16 36847 . . . . . . 7 (𝜑 → (𝐽𝑌) ∈ 𝐺)
4814, 15, 2, 31, 4, 8, 9, 41, 47ldualssvscl 34445 . . . . . 6 (𝜑 → (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)) ∈ 𝐺)
492, 3, 4, 8, 9, 30, 48ldualssvsubcl 34446 . . . . 5 (𝜑 → ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) ∈ 𝐺)
501, 49syl5eqel 2705 . . . 4 (𝜑𝐶𝐺)
515, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40, 3, 1lcfrlem36 36867 . . . 4 (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)))
52 fveq2 6191 . . . . . . 7 (𝑔 = 𝐶 → (𝐿𝑔) = (𝐿𝐶))
5352fveq2d 6195 . . . . . 6 (𝑔 = 𝐶 → ( ‘(𝐿𝑔)) = ( ‘(𝐿𝐶)))
5453eleq2d 2687 . . . . 5 (𝑔 = 𝐶 → ((𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)) ↔ (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶))))
5554rspcev 3309 . . . 4 ((𝐶𝐺 ∧ (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶))) → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5650, 51, 55syl2anc 693 . . 3 (𝜑 → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
57 eliun 4524 . . 3 ((𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5856, 57sylibr 224 . 2 (𝜑 → (𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)))
5958, 23syl6eleqr 2712 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  cdif 3571  cin 3573  wss 3574  {csn 4177  {cpr 4179   ciun 4520  cmpt 4729  cfv 5888  crio 6610  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  -gcsg 17424  invrcinvr 18671  LSubSpclss 18932  LSpanclspn 18971  LSAtomsclsa 34261  LFnlclfn 34344  LKerclk 34372  LDualcld 34410  HLchlt 34637  LHypclh 35270  DVecHcdvh 36367  ocHcoch 36636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lcv 34306  df-lfl 34345  df-lkr 34373  df-ldual 34411  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684
This theorem is referenced by:  lcfrlem38  36869
  Copyright terms: Public domain W3C validator