Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem37 Structured version   Visualization version   Unicode version

Theorem lcfrlem37 36868
Description: Lemma for lcfr 36874. (Contributed by NM, 8-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h  |-  H  =  ( LHyp `  K
)
lcfrlem17.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcfrlem17.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcfrlem17.v  |-  V  =  ( Base `  U
)
lcfrlem17.p  |-  .+  =  ( +g  `  U )
lcfrlem17.z  |-  .0.  =  ( 0g `  U )
lcfrlem17.n  |-  N  =  ( LSpan `  U )
lcfrlem17.a  |-  A  =  (LSAtoms `  U )
lcfrlem17.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfrlem17.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
lcfrlem17.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
lcfrlem17.ne  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
lcfrlem22.b  |-  B  =  ( ( N `  { X ,  Y }
)  i^i  (  ._|_  `  { ( X  .+  Y ) } ) )
lcfrlem24.t  |-  .x.  =  ( .s `  U )
lcfrlem24.s  |-  S  =  (Scalar `  U )
lcfrlem24.q  |-  Q  =  ( 0g `  S
)
lcfrlem24.r  |-  R  =  ( Base `  S
)
lcfrlem24.j  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
lcfrlem24.ib  |-  ( ph  ->  I  e.  B )
lcfrlem24.l  |-  L  =  (LKer `  U )
lcfrlem25.d  |-  D  =  (LDual `  U )
lcfrlem28.jn  |-  ( ph  ->  ( ( J `  Y ) `  I
)  =/=  Q )
lcfrlem29.i  |-  F  =  ( invr `  S
)
lcfrlem30.m  |-  .-  =  ( -g `  D )
lcfrlem30.c  |-  C  =  ( ( J `  X )  .-  (
( ( F `  ( ( J `  Y ) `  I
) ) ( .r
`  S ) ( ( J `  X
) `  I )
) ( .s `  D ) ( J `
 Y ) ) )
lcfrlem37.g  |-  ( ph  ->  G  e.  ( LSubSp `  D ) )
lcfrlem37.gs  |-  ( ph  ->  G  C_  { f  e.  (LFnl `  U )  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) } )
lcfrlem37.e  |-  E  = 
U_ g  e.  G  (  ._|_  `  ( L `  g ) )
lcfrlem37.xe  |-  ( ph  ->  X  e.  E )
lcfrlem37.ye  |-  ( ph  ->  Y  e.  E )
Assertion
Ref Expression
lcfrlem37  |-  ( ph  ->  ( X  .+  Y
)  e.  E )
Distinct variable groups:    v, k, w, x,  ._|_    .+ , k, v, w, x    R, k, v, x    S, k    .x. , k, v, w, x   
v, V, x    k, X, v, w, x    k, Y, v, w, x    x,  .0.    f, J    f, L    ._|_ ,
f    .+ , f    R, f    .x. , f    U, f    f, V   
f, X    f, Y, k, v, w, x, g    C, g, k    D, g, k    g, G, k   
g, I, k    f,
g, J, k    g, L, k    ._|_ , g    .+ , g    Q, g, k    U, k   
g, V    g, X    g, Y    ph, g, k    v,
g, w, x
Allowed substitution hints:    ph( x, w, v, f)    A( x, w, v, f, g, k)    B( x, w, v, f, g, k)    C( x, w, v, f)    D( x, w, v, f)    Q( x, w, v, f)    R( w, g)    S( x, w, v, f, g)    .x. ( g)    U( x, w, v, g)    E( x, w, v, f, g, k)    F( x, w, v, f, g, k)    G( x, w, v, f)    H( x, w, v, f, g, k)    I( x, w, v, f)    J( x, w, v)    K( x, w, v, f, g, k)    L( x, w, v)    .- ( x, w, v, f, g, k)    N( x, w, v, f, g, k)    V( w, k)    W( x, w, v, f, g, k)    .0. ( w, v, f, g, k)

Proof of Theorem lcfrlem37
StepHypRef Expression
1 lcfrlem30.c . . . . 5  |-  C  =  ( ( J `  X )  .-  (
( ( F `  ( ( J `  Y ) `  I
) ) ( .r
`  S ) ( ( J `  X
) `  I )
) ( .s `  D ) ( J `
 Y ) ) )
2 lcfrlem25.d . . . . . 6  |-  D  =  (LDual `  U )
3 lcfrlem30.m . . . . . 6  |-  .-  =  ( -g `  D )
4 eqid 2622 . . . . . 6  |-  ( LSubSp `  D )  =  (
LSubSp `  D )
5 lcfrlem17.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
6 lcfrlem17.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
7 lcfrlem17.k . . . . . . 7  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
85, 6, 7dvhlmod 36399 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
9 lcfrlem37.g . . . . . 6  |-  ( ph  ->  G  e.  ( LSubSp `  D ) )
10 lcfrlem17.o . . . . . . 7  |-  ._|_  =  ( ( ocH `  K
) `  W )
11 lcfrlem17.v . . . . . . 7  |-  V  =  ( Base `  U
)
12 lcfrlem17.p . . . . . . 7  |-  .+  =  ( +g  `  U )
13 lcfrlem24.t . . . . . . 7  |-  .x.  =  ( .s `  U )
14 lcfrlem24.s . . . . . . 7  |-  S  =  (Scalar `  U )
15 lcfrlem24.r . . . . . . 7  |-  R  =  ( Base `  S
)
16 lcfrlem17.z . . . . . . 7  |-  .0.  =  ( 0g `  U )
17 eqid 2622 . . . . . . 7  |-  (LFnl `  U )  =  (LFnl `  U )
18 lcfrlem24.l . . . . . . 7  |-  L  =  (LKer `  U )
19 eqid 2622 . . . . . . 7  |-  ( 0g
`  D )  =  ( 0g `  D
)
20 eqid 2622 . . . . . . 7  |-  { f  e.  (LFnl `  U
)  |  (  ._|_  `  (  ._|_  `  ( L `
 f ) ) )  =  ( L `
 f ) }  =  { f  e.  (LFnl `  U )  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
21 lcfrlem24.j . . . . . . 7  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
22 lcfrlem37.gs . . . . . . 7  |-  ( ph  ->  G  C_  { f  e.  (LFnl `  U )  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) } )
23 lcfrlem37.e . . . . . . 7  |-  E  = 
U_ g  e.  G  (  ._|_  `  ( L `  g ) )
24 lcfrlem37.xe . . . . . . . 8  |-  ( ph  ->  X  e.  E )
25 lcfrlem17.x . . . . . . . . 9  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
26 eldifsni 4320 . . . . . . . . 9  |-  ( X  e.  ( V  \  {  .0.  } )  ->  X  =/=  .0.  )
2725, 26syl 17 . . . . . . . 8  |-  ( ph  ->  X  =/=  .0.  )
28 eldifsn 4317 . . . . . . . 8  |-  ( X  e.  ( E  \  {  .0.  } )  <->  ( X  e.  E  /\  X  =/= 
.0.  ) )
2924, 27, 28sylanbrc 698 . . . . . . 7  |-  ( ph  ->  X  e.  ( E 
\  {  .0.  }
) )
305, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 29lcfrlem16 36847 . . . . . 6  |-  ( ph  ->  ( J `  X
)  e.  G )
31 eqid 2622 . . . . . . 7  |-  ( .s
`  D )  =  ( .s `  D
)
32 lcfrlem17.n . . . . . . . 8  |-  N  =  ( LSpan `  U )
33 lcfrlem17.a . . . . . . . 8  |-  A  =  (LSAtoms `  U )
34 lcfrlem17.y . . . . . . . 8  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
35 lcfrlem17.ne . . . . . . . 8  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
36 lcfrlem22.b . . . . . . . 8  |-  B  =  ( ( N `  { X ,  Y }
)  i^i  (  ._|_  `  { ( X  .+  Y ) } ) )
37 lcfrlem24.q . . . . . . . 8  |-  Q  =  ( 0g `  S
)
38 lcfrlem24.ib . . . . . . . 8  |-  ( ph  ->  I  e.  B )
39 lcfrlem28.jn . . . . . . . 8  |-  ( ph  ->  ( ( J `  Y ) `  I
)  =/=  Q )
40 lcfrlem29.i . . . . . . . 8  |-  F  =  ( invr `  S
)
415, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40lcfrlem29 36860 . . . . . . 7  |-  ( ph  ->  ( ( F `  ( ( J `  Y ) `  I
) ) ( .r
`  S ) ( ( J `  X
) `  I )
)  e.  R )
42 lcfrlem37.ye . . . . . . . . 9  |-  ( ph  ->  Y  e.  E )
43 eldifsni 4320 . . . . . . . . . 10  |-  ( Y  e.  ( V  \  {  .0.  } )  ->  Y  =/=  .0.  )
4434, 43syl 17 . . . . . . . . 9  |-  ( ph  ->  Y  =/=  .0.  )
45 eldifsn 4317 . . . . . . . . 9  |-  ( Y  e.  ( E  \  {  .0.  } )  <->  ( Y  e.  E  /\  Y  =/= 
.0.  ) )
4642, 44, 45sylanbrc 698 . . . . . . . 8  |-  ( ph  ->  Y  e.  ( E 
\  {  .0.  }
) )
475, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 46lcfrlem16 36847 . . . . . . 7  |-  ( ph  ->  ( J `  Y
)  e.  G )
4814, 15, 2, 31, 4, 8, 9, 41, 47ldualssvscl 34445 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 ( ( J `
 Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
) ) ( .s
`  D ) ( J `  Y ) )  e.  G )
492, 3, 4, 8, 9, 30, 48ldualssvsubcl 34446 . . . . 5  |-  ( ph  ->  ( ( J `  X )  .-  (
( ( F `  ( ( J `  Y ) `  I
) ) ( .r
`  S ) ( ( J `  X
) `  I )
) ( .s `  D ) ( J `
 Y ) ) )  e.  G )
501, 49syl5eqel 2705 . . . 4  |-  ( ph  ->  C  e.  G )
515, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40, 3, 1lcfrlem36 36867 . . . 4  |-  ( ph  ->  ( X  .+  Y
)  e.  (  ._|_  `  ( L `  C
) ) )
52 fveq2 6191 . . . . . . 7  |-  ( g  =  C  ->  ( L `  g )  =  ( L `  C ) )
5352fveq2d 6195 . . . . . 6  |-  ( g  =  C  ->  (  ._|_  `  ( L `  g ) )  =  (  ._|_  `  ( L `
 C ) ) )
5453eleq2d 2687 . . . . 5  |-  ( g  =  C  ->  (
( X  .+  Y
)  e.  (  ._|_  `  ( L `  g
) )  <->  ( X  .+  Y )  e.  ( 
._|_  `  ( L `  C ) ) ) )
5554rspcev 3309 . . . 4  |-  ( ( C  e.  G  /\  ( X  .+  Y )  e.  (  ._|_  `  ( L `  C )
) )  ->  E. g  e.  G  ( X  .+  Y )  e.  ( 
._|_  `  ( L `  g ) ) )
5650, 51, 55syl2anc 693 . . 3  |-  ( ph  ->  E. g  e.  G  ( X  .+  Y )  e.  (  ._|_  `  ( L `  g )
) )
57 eliun 4524 . . 3  |-  ( ( X  .+  Y )  e.  U_ g  e.  G  (  ._|_  `  ( L `  g )
)  <->  E. g  e.  G  ( X  .+  Y )  e.  (  ._|_  `  ( L `  g )
) )
5856, 57sylibr 224 . 2  |-  ( ph  ->  ( X  .+  Y
)  e.  U_ g  e.  G  (  ._|_  `  ( L `  g
) ) )
5958, 23syl6eleqr 2712 1  |-  ( ph  ->  ( X  .+  Y
)  e.  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   {cpr 4179   U_ciun 4520    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   -gcsg 17424   invrcinvr 18671   LSubSpclss 18932   LSpanclspn 18971  LSAtomsclsa 34261  LFnlclfn 34344  LKerclk 34372  LDualcld 34410   HLchlt 34637   LHypclh 35270   DVecHcdvh 36367   ocHcoch 36636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lcv 34306  df-lfl 34345  df-lkr 34373  df-ldual 34411  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684
This theorem is referenced by:  lcfrlem38  36869
  Copyright terms: Public domain W3C validator