![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem39 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 36874. Eliminate 𝐽. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem38.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem38.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem38.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem38.p | ⊢ + = (+g‘𝑈) |
lcfrlem38.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfrlem38.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem38.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem38.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
lcfrlem38.c | ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcfrlem38.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
lcfrlem38.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem38.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
lcfrlem38.gs | ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
lcfrlem38.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
lcfrlem38.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
lcfrlem38.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem38.x | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
lcfrlem38.y | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
lcfrlem38.sp | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem38.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem38.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem38.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem38.n | ⊢ (𝜑 → 𝐼 ≠ 0 ) |
Ref | Expression |
---|---|
lcfrlem39 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem38.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem38.o | . 2 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcfrlem38.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lcfrlem38.p | . 2 ⊢ + = (+g‘𝑈) | |
5 | lcfrlem38.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lcfrlem38.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
7 | lcfrlem38.d | . 2 ⊢ 𝐷 = (LDual‘𝑈) | |
8 | lcfrlem38.q | . 2 ⊢ 𝑄 = (LSubSp‘𝐷) | |
9 | lcfrlem38.c | . 2 ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
10 | lcfrlem38.e | . 2 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
11 | lcfrlem38.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
12 | lcfrlem38.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
13 | lcfrlem38.gs | . 2 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) | |
14 | lcfrlem38.xe | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
15 | lcfrlem38.ye | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
16 | lcfrlem38.z | . 2 ⊢ 0 = (0g‘𝑈) | |
17 | lcfrlem38.x | . 2 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
18 | lcfrlem38.y | . 2 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
19 | lcfrlem38.sp | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
20 | lcfrlem38.ne | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
21 | lcfrlem38.b | . 2 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
22 | lcfrlem38.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
23 | lcfrlem38.n | . 2 ⊢ (𝜑 → 𝐼 ≠ 0 ) | |
24 | eqid 2622 | . 2 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
25 | eqid 2622 | . 2 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
26 | eqid 2622 | . 2 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
27 | eqid 2622 | . 2 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
28 | oveq1 6657 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑗( ·𝑠 ‘𝑈)𝑥) = (𝑘( ·𝑠 ‘𝑈)𝑥)) | |
29 | 28 | oveq2d 6666 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥)) = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥))) |
30 | 29 | eqeq2d 2632 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥)) ↔ 𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥)))) |
31 | 30 | rexbidv 3052 | . . . . 5 ⊢ (𝑗 = 𝑘 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥)) ↔ ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥)))) |
32 | 31 | cbvriotav 6622 | . . . 4 ⊢ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥))) = (℩𝑘 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥))) |
33 | 32 | mpteq2i 4741 | . . 3 ⊢ (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥)))) = (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥)))) |
34 | 33 | mpteq2i 4741 | . 2 ⊢ (𝑥 ∈ ((Base‘𝑈) ∖ { 0 }) ↦ (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥))))) = (𝑥 ∈ ((Base‘𝑈) ∖ { 0 }) ↦ (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥))))) |
35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 34 | lcfrlem38 36869 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 {crab 2916 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 {csn 4177 {cpr 4179 ∪ ciun 4520 ↦ cmpt 4729 ‘cfv 5888 ℩crio 6610 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 Scalarcsca 15944 ·𝑠 cvsca 15945 0gc0g 16100 LSubSpclss 18932 LSpanclspn 18971 LFnlclfn 34344 LKerclk 34372 LDualcld 34410 HLchlt 34637 LHypclh 35270 DVecHcdvh 36367 ocHcoch 36636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-mre 16246 df-mrc 16247 df-acs 16249 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-oppg 17776 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lsatoms 34263 df-lshyp 34264 df-lcv 34306 df-lfl 34345 df-lkr 34373 df-ldual 34411 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tgrp 36031 df-tendo 36043 df-edring 36045 df-dveca 36291 df-disoa 36318 df-dvech 36368 df-dib 36428 df-dic 36462 df-dih 36518 df-doch 36637 df-djh 36684 |
This theorem is referenced by: lcfrlem40 36871 |
Copyright terms: Public domain | W3C validator |