Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem40 Structured version   Visualization version   GIF version

Theorem lcfrlem40 36871
Description: Lemma for lcfr 36874. Eliminate 𝐵 and 𝐼. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem38.h 𝐻 = (LHyp‘𝐾)
lcfrlem38.o = ((ocH‘𝐾)‘𝑊)
lcfrlem38.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem38.p + = (+g𝑈)
lcfrlem38.f 𝐹 = (LFnl‘𝑈)
lcfrlem38.l 𝐿 = (LKer‘𝑈)
lcfrlem38.d 𝐷 = (LDual‘𝑈)
lcfrlem38.q 𝑄 = (LSubSp‘𝐷)
lcfrlem38.c 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem38.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem38.g (𝜑𝐺𝑄)
lcfrlem38.gs (𝜑𝐺𝐶)
lcfrlem38.xe (𝜑𝑋𝐸)
lcfrlem38.ye (𝜑𝑌𝐸)
lcfrlem38.z 0 = (0g𝑈)
lcfrlem38.x (𝜑𝑋0 )
lcfrlem38.y (𝜑𝑌0 )
lcfrlem38.sp 𝑁 = (LSpan‘𝑈)
lcfrlem38.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lcfrlem40 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝐷,𝑔   𝑔,𝐺   𝑓,𝑔,𝐿   ,𝑓,𝑔   + ,𝑓,𝑔   𝑈,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔   0 ,𝑓,𝑔   𝜑,𝑔   𝑔,𝑁
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓,𝑔)   𝐷(𝑓)   𝑄(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐺(𝑓)   𝐻(𝑓,𝑔)   𝐾(𝑓,𝑔)   𝑁(𝑓)   𝑊(𝑓,𝑔)

Proof of Theorem lcfrlem40
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 lcfrlem38.z . . 3 0 = (0g𝑈)
2 eqid 2622 . . 3 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
3 lcfrlem38.h . . . 4 𝐻 = (LHyp‘𝐾)
4 lcfrlem38.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 lcfrlem38.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5dvhlmod 36399 . . 3 (𝜑𝑈 ∈ LMod)
7 lcfrlem38.o . . . 4 = ((ocH‘𝐾)‘𝑊)
8 eqid 2622 . . . 4 (Base‘𝑈) = (Base‘𝑈)
9 lcfrlem38.p . . . 4 + = (+g𝑈)
10 lcfrlem38.sp . . . 4 𝑁 = (LSpan‘𝑈)
11 lcfrlem38.l . . . . . 6 𝐿 = (LKer‘𝑈)
12 lcfrlem38.d . . . . . 6 𝐷 = (LDual‘𝑈)
13 lcfrlem38.q . . . . . 6 𝑄 = (LSubSp‘𝐷)
14 lcfrlem38.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
15 lcfrlem38.g . . . . . 6 (𝜑𝐺𝑄)
16 lcfrlem38.xe . . . . . 6 (𝜑𝑋𝐸)
173, 7, 4, 8, 11, 12, 13, 14, 5, 15, 16lcfrlem4 36834 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑈))
18 lcfrlem38.x . . . . 5 (𝜑𝑋0 )
19 eldifsn 4317 . . . . 5 (𝑋 ∈ ((Base‘𝑈) ∖ { 0 }) ↔ (𝑋 ∈ (Base‘𝑈) ∧ 𝑋0 ))
2017, 18, 19sylanbrc 698 . . . 4 (𝜑𝑋 ∈ ((Base‘𝑈) ∖ { 0 }))
21 lcfrlem38.ye . . . . . 6 (𝜑𝑌𝐸)
223, 7, 4, 8, 11, 12, 13, 14, 5, 15, 21lcfrlem4 36834 . . . . 5 (𝜑𝑌 ∈ (Base‘𝑈))
23 lcfrlem38.y . . . . 5 (𝜑𝑌0 )
24 eldifsn 4317 . . . . 5 (𝑌 ∈ ((Base‘𝑈) ∖ { 0 }) ↔ (𝑌 ∈ (Base‘𝑈) ∧ 𝑌0 ))
2522, 23, 24sylanbrc 698 . . . 4 (𝜑𝑌 ∈ ((Base‘𝑈) ∖ { 0 }))
26 lcfrlem38.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
273, 7, 4, 8, 9, 1, 10, 2, 5, 20, 25, 26lcfrlem21 36852 . . 3 (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∈ (LSAtoms‘𝑈))
281, 2, 6, 27lsateln0 34282 . 2 (𝜑 → ∃𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))𝑖0 )
29 lcfrlem38.f . . . 4 𝐹 = (LFnl‘𝑈)
30 lcfrlem38.c . . . 4 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
3153ad2ant1 1082 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32153ad2ant1 1082 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝐺𝑄)
33 lcfrlem38.gs . . . . 5 (𝜑𝐺𝐶)
34333ad2ant1 1082 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝐺𝐶)
35163ad2ant1 1082 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑋𝐸)
36213ad2ant1 1082 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑌𝐸)
37183ad2ant1 1082 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑋0 )
38233ad2ant1 1082 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑌0 )
39263ad2ant1 1082 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
40 eqid 2622 . . . 4 ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
41 simp2 1062 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})))
42 simp3 1063 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑖0 )
433, 7, 4, 9, 29, 11, 12, 13, 30, 14, 31, 32, 34, 35, 36, 1, 37, 38, 10, 39, 40, 41, 42lcfrlem39 36870 . . 3 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → (𝑋 + 𝑌) ∈ 𝐸)
4443rexlimdv3a 3033 . 2 (𝜑 → (∃𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))𝑖0 → (𝑋 + 𝑌) ∈ 𝐸))
4528, 44mpd 15 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  cdif 3571  cin 3573  wss 3574  {csn 4177  {cpr 4179   ciun 4520  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  LSubSpclss 18932  LSpanclspn 18971  LSAtomsclsa 34261  LFnlclfn 34344  LKerclk 34372  LDualcld 34410  HLchlt 34637  LHypclh 35270  DVecHcdvh 36367  ocHcoch 36636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lcv 34306  df-lfl 34345  df-lkr 34373  df-ldual 34411  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684
This theorem is referenced by:  lcfrlem41  36872
  Copyright terms: Public domain W3C validator