MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgrn1cycl Structured version   Visualization version   Unicode version

Theorem lfgrn1cycl 26697
Description: In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 2-Feb-2021.)
Hypotheses
Ref Expression
lfgrn1cycl.v  |-  V  =  (Vtx `  G )
lfgrn1cycl.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
lfgrn1cycl  |-  ( I : dom  I --> { x  e.  ~P V  |  2  <_  ( # `  x
) }  ->  ( F (Cycles `  G ) P  ->  ( # `  F
)  =/=  1 ) )
Distinct variable groups:    x, F    x, I    x, V
Allowed substitution hints:    P( x)    G( x)

Proof of Theorem lfgrn1cycl
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 cyclprop 26688 . . 3  |-  ( F (Cycles `  G ) P  ->  ( F (Paths `  G ) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) ) )
2 cycliswlk 26693 . . 3  |-  ( F (Cycles `  G ) P  ->  F (Walks `  G ) P )
3 lfgrn1cycl.i . . . . . . . 8  |-  I  =  (iEdg `  G )
4 lfgrn1cycl.v . . . . . . . 8  |-  V  =  (Vtx `  G )
53, 4lfgrwlknloop 26586 . . . . . . 7  |-  ( ( I : dom  I --> { x  e.  ~P V  |  2  <_  (
# `  x ) }  /\  F (Walks `  G ) P )  ->  A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) ) )
6 1nn 11031 . . . . . . . . . . . . . 14  |-  1  e.  NN
7 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  1  ->  (
( # `  F )  e.  NN  <->  1  e.  NN ) )
86, 7mpbiri 248 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  1  ->  ( # `
 F )  e.  NN )
9 lbfzo0 12507 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0..^ (
# `  F )
)  <->  ( # `  F
)  e.  NN )
108, 9sylibr 224 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  1  ->  0  e.  ( 0..^ ( # `  F ) ) )
11 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  0  ->  ( P `  k )  =  ( P ` 
0 ) )
12 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( k  =  0  ->  (
k  +  1 )  =  ( 0  +  1 ) )
13 0p1e1 11132 . . . . . . . . . . . . . . . 16  |-  ( 0  +  1 )  =  1
1412, 13syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( k  =  0  ->  (
k  +  1 )  =  1 )
1514fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( k  =  0  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
1 ) )
1611, 15neeq12d 2855 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
( P `  k
)  =/=  ( P `
 ( k  +  1 ) )  <->  ( P `  0 )  =/=  ( P `  1
) ) )
1716rspcv 3305 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0..^ (
# `  F )
)  ->  ( A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) )  ->  ( P `  0 )  =/=  ( P `  1
) ) )
1810, 17syl 17 . . . . . . . . . . 11  |-  ( (
# `  F )  =  1  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) )  ->  ( P `  0 )  =/=  ( P `  1
) ) )
1918impcom 446 . . . . . . . . . 10  |-  ( ( A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) )  /\  ( # `  F )  =  1 )  ->  ( P `  0 )  =/=  ( P `  1
) )
20 fveq2 6191 . . . . . . . . . . . 12  |-  ( (
# `  F )  =  1  ->  ( P `  ( # `  F
) )  =  ( P `  1 ) )
2120neeq2d 2854 . . . . . . . . . . 11  |-  ( (
# `  F )  =  1  ->  (
( P `  0
)  =/=  ( P `
 ( # `  F
) )  <->  ( P `  0 )  =/=  ( P `  1
) ) )
2221adantl 482 . . . . . . . . . 10  |-  ( ( A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) )  /\  ( # `  F )  =  1 )  ->  ( ( P `  0 )  =/=  ( P `  ( # `
 F ) )  <-> 
( P `  0
)  =/=  ( P `
 1 ) ) )
2319, 22mpbird 247 . . . . . . . . 9  |-  ( ( A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) )  /\  ( # `  F )  =  1 )  ->  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) )
2423ex 450 . . . . . . . 8  |-  ( A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) )  ->  ( ( # `
 F )  =  1  ->  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) ) )
2524necon2d 2817 . . . . . . 7  |-  ( A. k  e.  ( 0..^ ( # `  F
) ) ( P `
 k )  =/=  ( P `  (
k  +  1 ) )  ->  ( ( P `  0 )  =  ( P `  ( # `  F ) )  ->  ( # `  F
)  =/=  1 ) )
265, 25syl 17 . . . . . 6  |-  ( ( I : dom  I --> { x  e.  ~P V  |  2  <_  (
# `  x ) }  /\  F (Walks `  G ) P )  ->  ( ( P `
 0 )  =  ( P `  ( # `
 F ) )  ->  ( # `  F
)  =/=  1 ) )
2726ex 450 . . . . 5  |-  ( I : dom  I --> { x  e.  ~P V  |  2  <_  ( # `  x
) }  ->  ( F (Walks `  G ) P  ->  ( ( P `
 0 )  =  ( P `  ( # `
 F ) )  ->  ( # `  F
)  =/=  1 ) ) )
2827com13 88 . . . 4  |-  ( ( P `  0 )  =  ( P `  ( # `  F ) )  ->  ( F
(Walks `  G ) P  ->  ( I : dom  I --> { x  e.  ~P V  |  2  <_  ( # `  x
) }  ->  ( # `
 F )  =/=  1 ) ) )
2928adantl 482 . . 3  |-  ( ( F (Paths `  G
) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  ( F (Walks `  G ) P  ->  ( I : dom  I --> { x  e.  ~P V  |  2  <_  ( # `  x
) }  ->  ( # `
 F )  =/=  1 ) ) )
301, 2, 29sylc 65 . 2  |-  ( F (Cycles `  G ) P  ->  ( I : dom  I --> { x  e.  ~P V  |  2  <_  ( # `  x
) }  ->  ( # `
 F )  =/=  1 ) )
3130com12 32 1  |-  ( I : dom  I --> { x  e.  ~P V  |  2  <_  ( # `  x
) }  ->  ( F (Cycles `  G ) P  ->  ( # `  F
)  =/=  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075   NNcn 11020   2c2 11070  ..^cfzo 12465   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Walkscwlks 26492  Pathscpths 26608  Cyclesccycls 26680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-trls 26589  df-pths 26612  df-cycls 26682
This theorem is referenced by:  umgrn1cycl  26699
  Copyright terms: Public domain W3C validator