Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuzlem Structured version   Visualization version   GIF version

Theorem limsupubuzlem 39944
Description: If the limsup is not +∞, then the function is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuzlem.j 𝑗𝜑
limsupubuzlem.e 𝑗𝑋
limsupubuzlem.m (𝜑𝑀 ∈ ℤ)
limsupubuzlem.z 𝑍 = (ℤ𝑀)
limsupubuzlem.f (𝜑𝐹:𝑍⟶ℝ)
limsupubuzlem.y (𝜑𝑌 ∈ ℝ)
limsupubuzlem.k (𝜑𝐾 ∈ ℝ)
limsupubuzlem.b (𝜑 → ∀𝑗𝑍 (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
limsupubuzlem.n 𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾))
limsupubuzlem.w 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < )
limsupubuzlem.x 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
Assertion
Ref Expression
limsupubuzlem (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑗,𝑀   𝑗,𝑁   𝑥,𝑋   𝑥,𝑍   𝑥,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑗)   𝐾(𝑥,𝑗)   𝑀(𝑥)   𝑁(𝑥)   𝑊(𝑥,𝑗)   𝑋(𝑗)   𝑌(𝑥,𝑗)   𝑍(𝑗)

Proof of Theorem limsupubuzlem
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 limsupubuzlem.x . . 3 𝑋 = if(𝑊𝑌, 𝑌, 𝑊)
2 limsupubuzlem.y . . . 4 (𝜑𝑌 ∈ ℝ)
3 limsupubuzlem.w . . . . . 6 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < )
43a1i 11 . . . . 5 (𝜑𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ))
5 limsupubuzlem.j . . . . . 6 𝑗𝜑
6 ltso 10118 . . . . . . 7 < Or ℝ
76a1i 11 . . . . . 6 (𝜑 → < Or ℝ)
8 fzfid 12772 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
9 eqid 2622 . . . . . . . . 9 (ℤ𝑀) = (ℤ𝑀)
10 limsupubuzlem.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
11 limsupubuzlem.n . . . . . . . . . . 11 𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾))
1211a1i 11 . . . . . . . . . 10 (𝜑𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
13 limsupubuzlem.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℝ)
14 ceilcl 12643 . . . . . . . . . . . 12 (𝐾 ∈ ℝ → (⌈‘𝐾) ∈ ℤ)
1513, 14syl 17 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ∈ ℤ)
1610, 15ifcld 4131 . . . . . . . . . 10 (𝜑 → if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)) ∈ ℤ)
1712, 16eqeltrd 2701 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1815zred 11482 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ∈ ℝ)
1910zred 11482 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
20 max2 12018 . . . . . . . . . . 11 (((⌈‘𝐾) ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
2118, 19, 20syl2anc 693 . . . . . . . . . 10 (𝜑𝑀 ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
2212eqcomd 2628 . . . . . . . . . 10 (𝜑 → if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)) = 𝑁)
2321, 22breqtrd 4679 . . . . . . . . 9 (𝜑𝑀𝑁)
249, 10, 17, 23eluzd 39635 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
25 eluzfz2 12349 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2624, 25syl 17 . . . . . . 7 (𝜑𝑁 ∈ (𝑀...𝑁))
27 ne0i 3921 . . . . . . 7 (𝑁 ∈ (𝑀...𝑁) → (𝑀...𝑁) ≠ ∅)
2826, 27syl 17 . . . . . 6 (𝜑 → (𝑀...𝑁) ≠ ∅)
29 limsupubuzlem.f . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ)
3029adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐹:𝑍⟶ℝ)
3110adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
32 elfzelz 12342 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ ℤ)
3332adantl 482 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℤ)
34 elfzle1 12344 . . . . . . . . . 10 (𝑗 ∈ (𝑀...𝑁) → 𝑀𝑗)
3534adantl 482 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑀𝑗)
369, 31, 33, 35eluzd 39635 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ (ℤ𝑀))
37 limsupubuzlem.z . . . . . . . 8 𝑍 = (ℤ𝑀)
3836, 37syl6eleqr 2712 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗𝑍)
3930, 38ffvelrnd 6360 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)
405, 7, 8, 28, 39fisupclrnmpt 39622 . . . . 5 (𝜑 → sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ) ∈ ℝ)
414, 40eqeltrd 2701 . . . 4 (𝜑𝑊 ∈ ℝ)
422, 41ifcld 4131 . . 3 (𝜑 → if(𝑊𝑌, 𝑌, 𝑊) ∈ ℝ)
431, 42syl5eqel 2705 . 2 (𝜑𝑋 ∈ ℝ)
4429ffvelrnda 6359 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
4544adantr 481 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ∈ ℝ)
4641ad2antrr 762 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑊 ∈ ℝ)
4743ad2antrr 762 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑋 ∈ ℝ)
48 simpll 790 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝜑)
4910ad2antrr 762 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑀 ∈ ℤ)
5017ad2antrr 762 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑁 ∈ ℤ)
5137eluzelz2 39627 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ ℤ)
5251ad2antlr 763 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗 ∈ ℤ)
5337eleq2i 2693 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
5453biimpi 206 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
55 eluzle 11700 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
5654, 55syl 17 . . . . . . . . 9 (𝑗𝑍𝑀𝑗)
5756ad2antlr 763 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑀𝑗)
58 simpr 477 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗𝑁)
5949, 50, 52, 57, 58elfzd 39636 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑗 ∈ (𝑀...𝑁))
605, 8, 39fimaxre4 39625 . . . . . . . . 9 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑗 ∈ (𝑀...𝑁)(𝐹𝑗) ≤ 𝑏)
615, 39, 60suprubrnmpt 39468 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ≤ sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹𝑗)), ℝ, < ))
6261, 3syl6breqr 4695 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ≤ 𝑊)
6348, 59, 62syl2anc 693 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑊)
64 max1 12016 . . . . . . . . 9 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
6541, 2, 64syl2anc 693 . . . . . . . 8 (𝜑𝑊 ≤ if(𝑊𝑌, 𝑌, 𝑊))
6665, 1syl6breqr 4695 . . . . . . 7 (𝜑𝑊𝑋)
6766ad2antrr 762 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → 𝑊𝑋)
6845, 46, 47, 63, 67letrd 10194 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑋)
6913ad2antrr 762 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾 ∈ ℝ)
70 uzssre 39620 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℝ
7137, 70eqsstri 3635 . . . . . . . . 9 𝑍 ⊆ ℝ
7271sseli 3599 . . . . . . . 8 (𝑗𝑍𝑗 ∈ ℝ)
7372ad2antlr 763 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑗 ∈ ℝ)
7470, 24sseldi 3601 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
7574ad2antrr 762 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑁 ∈ ℝ)
76 ceilge 12645 . . . . . . . . . . 11 (𝐾 ∈ ℝ → 𝐾 ≤ (⌈‘𝐾))
7713, 76syl 17 . . . . . . . . . 10 (𝜑𝐾 ≤ (⌈‘𝐾))
78 max1 12016 . . . . . . . . . . . 12 (((⌈‘𝐾) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (⌈‘𝐾) ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
7918, 19, 78syl2anc 693 . . . . . . . . . . 11 (𝜑 → (⌈‘𝐾) ≤ if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)))
8079, 22breqtrd 4679 . . . . . . . . . 10 (𝜑 → (⌈‘𝐾) ≤ 𝑁)
8113, 18, 74, 77, 80letrd 10194 . . . . . . . . 9 (𝜑𝐾𝑁)
8281ad2antrr 762 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾𝑁)
83 simpr 477 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → ¬ 𝑗𝑁)
8475, 73ltnled 10184 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → (𝑁 < 𝑗 ↔ ¬ 𝑗𝑁))
8583, 84mpbird 247 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝑁 < 𝑗)
8669, 75, 73, 82, 85lelttrd 10195 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾 < 𝑗)
8769, 73, 86ltled 10185 . . . . . 6 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → 𝐾𝑗)
8844adantr 481 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ∈ ℝ)
892ad2antrr 762 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌 ∈ ℝ)
9043ad2antrr 762 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑋 ∈ ℝ)
91 simpr 477 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝐾𝑗)
92 limsupubuzlem.b . . . . . . . . . 10 (𝜑 → ∀𝑗𝑍 (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9392r19.21bi 2932 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9493adantr 481 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐾𝑗 → (𝐹𝑗) ≤ 𝑌))
9591, 94mpd 15 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ≤ 𝑌)
96 max2 12018 . . . . . . . . . 10 ((𝑊 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9741, 2, 96syl2anc 693 . . . . . . . . 9 (𝜑𝑌 ≤ if(𝑊𝑌, 𝑌, 𝑊))
9897, 1syl6breqr 4695 . . . . . . . 8 (𝜑𝑌𝑋)
9998ad2antrr 762 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → 𝑌𝑋)
10088, 89, 90, 95, 99letrd 10194 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝐾𝑗) → (𝐹𝑗) ≤ 𝑋)
10187, 100syldan 487 . . . . 5 (((𝜑𝑗𝑍) ∧ ¬ 𝑗𝑁) → (𝐹𝑗) ≤ 𝑋)
10268, 101pm2.61dan 832 . . . 4 ((𝜑𝑗𝑍) → (𝐹𝑗) ≤ 𝑋)
103102ex 450 . . 3 (𝜑 → (𝑗𝑍 → (𝐹𝑗) ≤ 𝑋))
1045, 103ralrimi 2957 . 2 (𝜑 → ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋)
105 nfv 1843 . . 3 𝑥𝑗𝑍 (𝐹𝑗) ≤ 𝑋
106 nfcv 2764 . . . . 5 𝑗𝑥
107 limsupubuzlem.e . . . . 5 𝑗𝑋
108106, 107nfeq 2776 . . . 4 𝑗 𝑥 = 𝑋
109 breq2 4657 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑋))
110108, 109ralbid 2983 . . 3 (𝑥 = 𝑋 → (∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋))
111105, 110rspce 3304 . 2 ((𝑋 ∈ ℝ ∧ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑋) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
11243, 104, 111syl2anc 693 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wnf 1708  wcel 1990  wnfc 2751  wne 2794  wral 2912  wrex 2913  c0 3915  ifcif 4086   class class class wbr 4653  cmpt 4729   Or wor 5034  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  supcsup 8346  cr 9935   < clt 10074  cle 10075  cz 11377  cuz 11687  ...cfz 12326  cceil 12592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fl 12593  df-ceil 12594
This theorem is referenced by:  limsupubuz  39945
  Copyright terms: Public domain W3C validator