| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupubuzlem | Structured version Visualization version Unicode version | ||
| Description: If the limsup is not |
| Ref | Expression |
|---|---|
| limsupubuzlem.j |
|
| limsupubuzlem.e |
|
| limsupubuzlem.m |
|
| limsupubuzlem.z |
|
| limsupubuzlem.f |
|
| limsupubuzlem.y |
|
| limsupubuzlem.k |
|
| limsupubuzlem.b |
|
| limsupubuzlem.n |
|
| limsupubuzlem.w |
|
| limsupubuzlem.x |
|
| Ref | Expression |
|---|---|
| limsupubuzlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupubuzlem.x |
. . 3
| |
| 2 | limsupubuzlem.y |
. . . 4
| |
| 3 | limsupubuzlem.w |
. . . . . 6
| |
| 4 | 3 | a1i 11 |
. . . . 5
|
| 5 | limsupubuzlem.j |
. . . . . 6
| |
| 6 | ltso 10118 |
. . . . . . 7
| |
| 7 | 6 | a1i 11 |
. . . . . 6
|
| 8 | fzfid 12772 |
. . . . . 6
| |
| 9 | eqid 2622 |
. . . . . . . . 9
| |
| 10 | limsupubuzlem.m |
. . . . . . . . 9
| |
| 11 | limsupubuzlem.n |
. . . . . . . . . . 11
| |
| 12 | 11 | a1i 11 |
. . . . . . . . . 10
|
| 13 | limsupubuzlem.k |
. . . . . . . . . . . 12
| |
| 14 | ceilcl 12643 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . . 11
|
| 16 | 10, 15 | ifcld 4131 |
. . . . . . . . . 10
|
| 17 | 12, 16 | eqeltrd 2701 |
. . . . . . . . 9
|
| 18 | 15 | zred 11482 |
. . . . . . . . . . 11
|
| 19 | 10 | zred 11482 |
. . . . . . . . . . 11
|
| 20 | max2 12018 |
. . . . . . . . . . 11
| |
| 21 | 18, 19, 20 | syl2anc 693 |
. . . . . . . . . 10
|
| 22 | 12 | eqcomd 2628 |
. . . . . . . . . 10
|
| 23 | 21, 22 | breqtrd 4679 |
. . . . . . . . 9
|
| 24 | 9, 10, 17, 23 | eluzd 39635 |
. . . . . . . 8
|
| 25 | eluzfz2 12349 |
. . . . . . . 8
| |
| 26 | 24, 25 | syl 17 |
. . . . . . 7
|
| 27 | ne0i 3921 |
. . . . . . 7
| |
| 28 | 26, 27 | syl 17 |
. . . . . 6
|
| 29 | limsupubuzlem.f |
. . . . . . . 8
| |
| 30 | 29 | adantr 481 |
. . . . . . 7
|
| 31 | 10 | adantr 481 |
. . . . . . . . 9
|
| 32 | elfzelz 12342 |
. . . . . . . . . 10
| |
| 33 | 32 | adantl 482 |
. . . . . . . . 9
|
| 34 | elfzle1 12344 |
. . . . . . . . . 10
| |
| 35 | 34 | adantl 482 |
. . . . . . . . 9
|
| 36 | 9, 31, 33, 35 | eluzd 39635 |
. . . . . . . 8
|
| 37 | limsupubuzlem.z |
. . . . . . . 8
| |
| 38 | 36, 37 | syl6eleqr 2712 |
. . . . . . 7
|
| 39 | 30, 38 | ffvelrnd 6360 |
. . . . . 6
|
| 40 | 5, 7, 8, 28, 39 | fisupclrnmpt 39622 |
. . . . 5
|
| 41 | 4, 40 | eqeltrd 2701 |
. . . 4
|
| 42 | 2, 41 | ifcld 4131 |
. . 3
|
| 43 | 1, 42 | syl5eqel 2705 |
. 2
|
| 44 | 29 | ffvelrnda 6359 |
. . . . . . 7
|
| 45 | 44 | adantr 481 |
. . . . . 6
|
| 46 | 41 | ad2antrr 762 |
. . . . . 6
|
| 47 | 43 | ad2antrr 762 |
. . . . . 6
|
| 48 | simpll 790 |
. . . . . . 7
| |
| 49 | 10 | ad2antrr 762 |
. . . . . . . 8
|
| 50 | 17 | ad2antrr 762 |
. . . . . . . 8
|
| 51 | 37 | eluzelz2 39627 |
. . . . . . . . 9
|
| 52 | 51 | ad2antlr 763 |
. . . . . . . 8
|
| 53 | 37 | eleq2i 2693 |
. . . . . . . . . . 11
|
| 54 | 53 | biimpi 206 |
. . . . . . . . . 10
|
| 55 | eluzle 11700 |
. . . . . . . . . 10
| |
| 56 | 54, 55 | syl 17 |
. . . . . . . . 9
|
| 57 | 56 | ad2antlr 763 |
. . . . . . . 8
|
| 58 | simpr 477 |
. . . . . . . 8
| |
| 59 | 49, 50, 52, 57, 58 | elfzd 39636 |
. . . . . . 7
|
| 60 | 5, 8, 39 | fimaxre4 39625 |
. . . . . . . . 9
|
| 61 | 5, 39, 60 | suprubrnmpt 39468 |
. . . . . . . 8
|
| 62 | 61, 3 | syl6breqr 4695 |
. . . . . . 7
|
| 63 | 48, 59, 62 | syl2anc 693 |
. . . . . 6
|
| 64 | max1 12016 |
. . . . . . . . 9
| |
| 65 | 41, 2, 64 | syl2anc 693 |
. . . . . . . 8
|
| 66 | 65, 1 | syl6breqr 4695 |
. . . . . . 7
|
| 67 | 66 | ad2antrr 762 |
. . . . . 6
|
| 68 | 45, 46, 47, 63, 67 | letrd 10194 |
. . . . 5
|
| 69 | 13 | ad2antrr 762 |
. . . . . . 7
|
| 70 | uzssre 39620 |
. . . . . . . . . 10
| |
| 71 | 37, 70 | eqsstri 3635 |
. . . . . . . . 9
|
| 72 | 71 | sseli 3599 |
. . . . . . . 8
|
| 73 | 72 | ad2antlr 763 |
. . . . . . 7
|
| 74 | 70, 24 | sseldi 3601 |
. . . . . . . . 9
|
| 75 | 74 | ad2antrr 762 |
. . . . . . . 8
|
| 76 | ceilge 12645 |
. . . . . . . . . . 11
| |
| 77 | 13, 76 | syl 17 |
. . . . . . . . . 10
|
| 78 | max1 12016 |
. . . . . . . . . . . 12
| |
| 79 | 18, 19, 78 | syl2anc 693 |
. . . . . . . . . . 11
|
| 80 | 79, 22 | breqtrd 4679 |
. . . . . . . . . 10
|
| 81 | 13, 18, 74, 77, 80 | letrd 10194 |
. . . . . . . . 9
|
| 82 | 81 | ad2antrr 762 |
. . . . . . . 8
|
| 83 | simpr 477 |
. . . . . . . . 9
| |
| 84 | 75, 73 | ltnled 10184 |
. . . . . . . . 9
|
| 85 | 83, 84 | mpbird 247 |
. . . . . . . 8
|
| 86 | 69, 75, 73, 82, 85 | lelttrd 10195 |
. . . . . . 7
|
| 87 | 69, 73, 86 | ltled 10185 |
. . . . . 6
|
| 88 | 44 | adantr 481 |
. . . . . . 7
|
| 89 | 2 | ad2antrr 762 |
. . . . . . 7
|
| 90 | 43 | ad2antrr 762 |
. . . . . . 7
|
| 91 | simpr 477 |
. . . . . . . 8
| |
| 92 | limsupubuzlem.b |
. . . . . . . . . 10
| |
| 93 | 92 | r19.21bi 2932 |
. . . . . . . . 9
|
| 94 | 93 | adantr 481 |
. . . . . . . 8
|
| 95 | 91, 94 | mpd 15 |
. . . . . . 7
|
| 96 | max2 12018 |
. . . . . . . . . 10
| |
| 97 | 41, 2, 96 | syl2anc 693 |
. . . . . . . . 9
|
| 98 | 97, 1 | syl6breqr 4695 |
. . . . . . . 8
|
| 99 | 98 | ad2antrr 762 |
. . . . . . 7
|
| 100 | 88, 89, 90, 95, 99 | letrd 10194 |
. . . . . 6
|
| 101 | 87, 100 | syldan 487 |
. . . . 5
|
| 102 | 68, 101 | pm2.61dan 832 |
. . . 4
|
| 103 | 102 | ex 450 |
. . 3
|
| 104 | 5, 103 | ralrimi 2957 |
. 2
|
| 105 | nfv 1843 |
. . 3
| |
| 106 | nfcv 2764 |
. . . . 5
| |
| 107 | limsupubuzlem.e |
. . . . 5
| |
| 108 | 106, 107 | nfeq 2776 |
. . . 4
|
| 109 | breq2 4657 |
. . . 4
| |
| 110 | 108, 109 | ralbid 2983 |
. . 3
|
| 111 | 105, 110 | rspce 3304 |
. 2
|
| 112 | 43, 104, 111 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fl 12593 df-ceil 12594 |
| This theorem is referenced by: limsupubuz 39945 |
| Copyright terms: Public domain | W3C validator |