![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindssnlvec | Structured version Visualization version GIF version |
Description: A singleton not containing the zero element of a vector space is always linearly independent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 28-Apr-2019.) |
Ref | Expression |
---|---|
lindssnlvec | ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → {𝑆} linIndS 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 4320 | . . . . 5 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) → 𝑠 ≠ (0g‘(Scalar‘𝑀))) | |
2 | 1 | adantl 482 | . . . 4 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → 𝑠 ≠ (0g‘(Scalar‘𝑀))) |
3 | simpl3 1066 | . . . 4 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → 𝑆 ≠ (0g‘𝑀)) | |
4 | eqid 2622 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
5 | eqid 2622 | . . . . 5 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
6 | eqid 2622 | . . . . 5 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
7 | eqid 2622 | . . . . 5 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
8 | eqid 2622 | . . . . 5 ⊢ (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀)) | |
9 | eqid 2622 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
10 | simpl1 1064 | . . . . 5 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → 𝑀 ∈ LVec) | |
11 | eldifi 3732 | . . . . . 6 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) → 𝑠 ∈ (Base‘(Scalar‘𝑀))) | |
12 | 11 | adantl 482 | . . . . 5 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → 𝑠 ∈ (Base‘(Scalar‘𝑀))) |
13 | simpl2 1065 | . . . . 5 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → 𝑆 ∈ (Base‘𝑀)) | |
14 | 4, 5, 6, 7, 8, 9, 10, 12, 13 | lvecvsn0 19109 | . . . 4 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → ((𝑠( ·𝑠 ‘𝑀)𝑆) ≠ (0g‘𝑀) ↔ (𝑠 ≠ (0g‘(Scalar‘𝑀)) ∧ 𝑆 ≠ (0g‘𝑀)))) |
15 | 2, 3, 14 | mpbir2and 957 | . . 3 ⊢ (((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) ∧ 𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})) → (𝑠( ·𝑠 ‘𝑀)𝑆) ≠ (0g‘𝑀)) |
16 | 15 | ralrimiva 2966 | . 2 ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → ∀𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})(𝑠( ·𝑠 ‘𝑀)𝑆) ≠ (0g‘𝑀)) |
17 | lveclmod 19106 | . . . . 5 ⊢ (𝑀 ∈ LVec → 𝑀 ∈ LMod) | |
18 | 17 | anim1i 592 | . . . 4 ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ (Base‘𝑀))) |
19 | 18 | 3adant3 1081 | . . 3 ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ (Base‘𝑀))) |
20 | 4, 6, 7, 8, 9, 5 | snlindsntor 42260 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (Base‘𝑀)) → (∀𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})(𝑠( ·𝑠 ‘𝑀)𝑆) ≠ (0g‘𝑀) ↔ {𝑆} linIndS 𝑀)) |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → (∀𝑠 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))})(𝑠( ·𝑠 ‘𝑀)𝑆) ≠ (0g‘𝑀) ↔ {𝑆} linIndS 𝑀)) |
22 | 16, 21 | mpbid 222 | 1 ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → {𝑆} linIndS 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∖ cdif 3571 {csn 4177 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 Scalarcsca 15944 ·𝑠 cvsca 15945 0gc0g 16100 LModclmod 18863 LVecclvec 19102 linIndS clininds 42229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-0g 16102 df-gsum 16103 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-mulg 17541 df-cntz 17750 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-drng 18749 df-lmod 18865 df-lvec 19103 df-linc 42195 df-lininds 42231 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |