MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnat Structured version   Visualization version   Unicode version

Theorem lspsnat 19145
Description: There is no subspace strictly between the zero subspace and the span of a vector (i.e. a 1-dimensional subspace is an atom). (h1datomi 28440 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
lspsnat.v  |-  V  =  ( Base `  W
)
lspsnat.z  |-  .0.  =  ( 0g `  W )
lspsnat.s  |-  S  =  ( LSubSp `  W )
lspsnat.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnat  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  U  C_  ( N `
 { X }
) )  ->  ( U  =  ( N `  { X } )  \/  U  =  {  .0.  } ) )

Proof of Theorem lspsnat
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . . . . 6  |-  ( ( U  \  {  .0.  } )  =/=  (/)  <->  E. x  x  e.  ( U  \  {  .0.  } ) )
2 simprl 794 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  U  C_  ( N `  { X } ) )
3 lspsnat.s . . . . . . . . . 10  |-  S  =  ( LSubSp `  W )
4 lspsnat.n . . . . . . . . . 10  |-  N  =  ( LSpan `  W )
5 simpl1 1064 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  W  e.  LVec )
6 lveclmod 19106 . . . . . . . . . . 11  |-  ( W  e.  LVec  ->  W  e. 
LMod )
75, 6syl 17 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  W  e.  LMod )
8 simpl2 1065 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  U  e.  S
)
9 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  x  e.  ( U  \  {  .0.  } ) )
109eldifad 3586 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  x  e.  U
)
113, 4, 7, 8, 10lspsnel5a 18996 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  ( N `  { x } ) 
C_  U )
12 0ss 3972 . . . . . . . . . . . . . 14  |-  (/)  C_  V
1312a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  (/)  C_  V )
14 simpl3 1066 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  X  e.  V
)
15 ssdif 3745 . . . . . . . . . . . . . . . 16  |-  ( U 
C_  ( N `  { X } )  -> 
( U  \  {  .0.  } )  C_  (
( N `  { X } )  \  {  .0.  } ) )
1615ad2antrl 764 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  ( U  \  {  .0.  } )  C_  ( ( N `  { X } )  \  {  .0.  } ) )
1716, 9sseldd 3604 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  x  e.  ( ( N `  { X } )  \  {  .0.  } ) )
18 uncom 3757 . . . . . . . . . . . . . . . . . 18  |-  ( (/)  u. 
{ X } )  =  ( { X }  u.  (/) )
19 un0 3967 . . . . . . . . . . . . . . . . . 18  |-  ( { X }  u.  (/) )  =  { X }
2018, 19eqtri 2644 . . . . . . . . . . . . . . . . 17  |-  ( (/)  u. 
{ X } )  =  { X }
2120fveq2i 6194 . . . . . . . . . . . . . . . 16  |-  ( N `
 ( (/)  u.  { X } ) )  =  ( N `  { X } )
2221a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  ( N `  ( (/)  u.  { X } ) )  =  ( N `  { X } ) )
23 lspsnat.z . . . . . . . . . . . . . . . . 17  |-  .0.  =  ( 0g `  W )
2423, 4lsp0 19009 . . . . . . . . . . . . . . . 16  |-  ( W  e.  LMod  ->  ( N `
 (/) )  =  {  .0.  } )
257, 24syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  ( N `  (/) )  =  {  .0.  } )
2622, 25difeq12d 3729 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  ( ( N `
 ( (/)  u.  { X } ) )  \ 
( N `  (/) ) )  =  ( ( N `
 { X }
)  \  {  .0.  } ) )
2717, 26eleqtrrd 2704 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  x  e.  ( ( N `  ( (/) 
u.  { X }
) )  \  ( N `  (/) ) ) )
28 lspsnat.v . . . . . . . . . . . . . 14  |-  V  =  ( Base `  W
)
2928, 3, 4lspsolv 19143 . . . . . . . . . . . . 13  |-  ( ( W  e.  LVec  /\  ( (/)  C_  V  /\  X  e.  V  /\  x  e.  ( ( N `  ( (/)  u.  { X } ) )  \ 
( N `  (/) ) ) ) )  ->  X  e.  ( N `  ( (/) 
u.  { x }
) ) )
305, 13, 14, 27, 29syl13anc 1328 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  X  e.  ( N `  ( (/)  u. 
{ x } ) ) )
31 uncom 3757 . . . . . . . . . . . . . 14  |-  ( (/)  u. 
{ x } )  =  ( { x }  u.  (/) )
32 un0 3967 . . . . . . . . . . . . . 14  |-  ( { x }  u.  (/) )  =  { x }
3331, 32eqtri 2644 . . . . . . . . . . . . 13  |-  ( (/)  u. 
{ x } )  =  { x }
3433fveq2i 6194 . . . . . . . . . . . 12  |-  ( N `
 ( (/)  u.  {
x } ) )  =  ( N `  { x } )
3530, 34syl6eleq 2711 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  X  e.  ( N `  { x } ) )
3611, 35sseldd 3604 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  X  e.  U
)
373, 4, 7, 8, 36lspsnel5a 18996 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  ( N `  { X } )  C_  U )
382, 37eqssd 3620 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  ( U  C_  ( N `  { X } )  /\  x  e.  ( U  \  {  .0.  } ) ) )  ->  U  =  ( N `  { X } ) )
3938expr 643 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  U  C_  ( N `
 { X }
) )  ->  (
x  e.  ( U 
\  {  .0.  }
)  ->  U  =  ( N `  { X } ) ) )
4039exlimdv 1861 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  U  C_  ( N `
 { X }
) )  ->  ( E. x  x  e.  ( U  \  {  .0.  } )  ->  U  =  ( N `  { X } ) ) )
411, 40syl5bi 232 . . . . 5  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  U  C_  ( N `
 { X }
) )  ->  (
( U  \  {  .0.  } )  =/=  (/)  ->  U  =  ( N `  { X } ) ) )
4241necon1bd 2812 . . . 4  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  U  C_  ( N `
 { X }
) )  ->  ( -.  U  =  ( N `  { X } )  ->  ( U  \  {  .0.  }
)  =  (/) ) )
43 ssdif0 3942 . . . 4  |-  ( U 
C_  {  .0.  }  <->  ( U  \  {  .0.  } )  =  (/) )
4442, 43syl6ibr 242 . . 3  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  U  C_  ( N `
 { X }
) )  ->  ( -.  U  =  ( N `  { X } )  ->  U  C_ 
{  .0.  } ) )
45 simpl1 1064 . . . . 5  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  U  C_  ( N `
 { X }
) )  ->  W  e.  LVec )
4645, 6syl 17 . . . 4  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  U  C_  ( N `
 { X }
) )  ->  W  e.  LMod )
47 simpl2 1065 . . . 4  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  U  C_  ( N `
 { X }
) )  ->  U  e.  S )
4823, 3lssle0 18950 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( U  C_  {  .0.  }  <->  U  =  {  .0.  }
) )
4946, 47, 48syl2anc 693 . . 3  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  U  C_  ( N `
 { X }
) )  ->  ( U  C_  {  .0.  }  <->  U  =  {  .0.  }
) )
5044, 49sylibd 229 . 2  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  U  C_  ( N `
 { X }
) )  ->  ( -.  U  =  ( N `  { X } )  ->  U  =  {  .0.  } ) )
5150orrd 393 1  |-  ( ( ( W  e.  LVec  /\  U  e.  S  /\  X  e.  V )  /\  U  C_  ( N `
 { X }
) )  ->  ( U  =  ( N `  { X } )  \/  U  =  {  .0.  } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   ` cfv 5888   Basecbs 15857   0gc0g 16100   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by:  lspsncv0  19146  lsatcmp  34290  dihlspsnssN  36621  dihlspsnat  36622
  Copyright terms: Public domain W3C validator