MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslindf Structured version   Visualization version   Unicode version

Theorem lsslindf 20169
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lsslindf.u  |-  U  =  ( LSubSp `  W )
lsslindf.x  |-  X  =  ( Ws  S )
Assertion
Ref Expression
lsslindf  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ( F LIndF  X  <->  F LIndF  W ) )

Proof of Theorem lsslindf
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rellindf 20147 . . . 4  |-  Rel LIndF
21brrelexi 5158 . . 3  |-  ( F LIndF 
X  ->  F  e.  _V )
32a1i 11 . 2  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ( F LIndF  X  ->  F  e.  _V ) )
41brrelexi 5158 . . 3  |-  ( F LIndF 
W  ->  F  e.  _V )
54a1i 11 . 2  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ( F LIndF  W  ->  F  e.  _V ) )
6 simpr 477 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F : dom  F --> ( Base `  X )
)  ->  F : dom  F --> ( Base `  X
) )
7 lsslindf.x . . . . . . . . 9  |-  X  =  ( Ws  S )
8 eqid 2622 . . . . . . . . 9  |-  ( Base `  W )  =  (
Base `  W )
97, 8ressbasss 15932 . . . . . . . 8  |-  ( Base `  X )  C_  ( Base `  W )
10 fss 6056 . . . . . . . 8  |-  ( ( F : dom  F --> ( Base `  X )  /\  ( Base `  X
)  C_  ( Base `  W ) )  ->  F : dom  F --> ( Base `  W ) )
116, 9, 10sylancl 694 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F : dom  F --> ( Base `  X )
)  ->  F : dom  F --> ( Base `  W
) )
12 ffn 6045 . . . . . . . . 9  |-  ( F : dom  F --> ( Base `  W )  ->  F  Fn  dom  F )
1312adantl 482 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F : dom  F --> ( Base `  W )
)  ->  F  Fn  dom  F )
14 simp3 1063 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ran  F 
C_  S )
15 lsslindf.u . . . . . . . . . . . . 13  |-  U  =  ( LSubSp `  W )
168, 15lssss 18937 . . . . . . . . . . . 12  |-  ( S  e.  U  ->  S  C_  ( Base `  W
) )
17163ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  S  C_  ( Base `  W
) )
187, 8ressbas2 15931 . . . . . . . . . . 11  |-  ( S 
C_  ( Base `  W
)  ->  S  =  ( Base `  X )
)
1917, 18syl 17 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  S  =  ( Base `  X
) )
2014, 19sseqtrd 3641 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ran  F 
C_  ( Base `  X
) )
2120adantr 481 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F : dom  F --> ( Base `  W )
)  ->  ran  F  C_  ( Base `  X )
)
22 df-f 5892 . . . . . . . 8  |-  ( F : dom  F --> ( Base `  X )  <->  ( F  Fn  dom  F  /\  ran  F 
C_  ( Base `  X
) ) )
2313, 21, 22sylanbrc 698 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F : dom  F --> ( Base `  W )
)  ->  F : dom  F --> ( Base `  X
) )
2411, 23impbida 877 . . . . . 6  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ( F : dom  F --> ( Base `  X )  <->  F : dom  F --> ( Base `  W
) ) )
2524adantr 481 . . . . 5  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( F : dom  F --> ( Base `  X
)  <->  F : dom  F --> ( Base `  W )
) )
26 simpl2 1065 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  S  e.  U
)
27 eqid 2622 . . . . . . . . . . . 12  |-  (Scalar `  W )  =  (Scalar `  W )
287, 27resssca 16031 . . . . . . . . . . 11  |-  ( S  e.  U  ->  (Scalar `  W )  =  (Scalar `  X ) )
2928eqcomd 2628 . . . . . . . . . 10  |-  ( S  e.  U  ->  (Scalar `  X )  =  (Scalar `  W ) )
3026, 29syl 17 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  (Scalar `  X )  =  (Scalar `  W )
)
3130fveq2d 6195 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( Base `  (Scalar `  X ) )  =  ( Base `  (Scalar `  W ) ) )
3230fveq2d 6195 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( 0g `  (Scalar `  X ) )  =  ( 0g `  (Scalar `  W ) ) )
3332sneqd 4189 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  { ( 0g
`  (Scalar `  X )
) }  =  {
( 0g `  (Scalar `  W ) ) } )
3431, 33difeq12d 3729 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( ( Base `  (Scalar `  X )
)  \  { ( 0g `  (Scalar `  X
) ) } )  =  ( ( Base `  (Scalar `  W )
)  \  { ( 0g `  (Scalar `  W
) ) } ) )
35 eqid 2622 . . . . . . . . . . . . 13  |-  ( .s
`  W )  =  ( .s `  W
)
367, 35ressvsca 16032 . . . . . . . . . . . 12  |-  ( S  e.  U  ->  ( .s `  W )  =  ( .s `  X
) )
3736eqcomd 2628 . . . . . . . . . . 11  |-  ( S  e.  U  ->  ( .s `  X )  =  ( .s `  W
) )
3826, 37syl 17 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( .s `  X )  =  ( .s `  W ) )
3938oveqd 6667 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( k ( .s `  X ) ( F `  x
) )  =  ( k ( .s `  W ) ( F `
 x ) ) )
40 simpl1 1064 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  W  e.  LMod )
41 imassrn 5477 . . . . . . . . . . . 12  |-  ( F
" ( dom  F  \  { x } ) )  C_  ran  F
42 simpl3 1066 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ran  F  C_  S
)
4341, 42syl5ss 3614 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( F "
( dom  F  \  {
x } ) ) 
C_  S )
44 eqid 2622 . . . . . . . . . . . 12  |-  ( LSpan `  W )  =  (
LSpan `  W )
45 eqid 2622 . . . . . . . . . . . 12  |-  ( LSpan `  X )  =  (
LSpan `  X )
467, 44, 45, 15lsslsp 19015 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ( F " ( dom  F  \  { x } ) )  C_  S )  ->  ( ( LSpan `  W
) `  ( F " ( dom  F  \  { x } ) ) )  =  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) ) )
4740, 26, 43, 46syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) )  =  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) ) )
4847eqcomd 2628 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) )  =  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) ) )
4939, 48eleq12d 2695 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( ( k ( .s `  X
) ( F `  x ) )  e.  ( ( LSpan `  X
) `  ( F " ( dom  F  \  { x } ) ) )  <->  ( k
( .s `  W
) ( F `  x ) )  e.  ( ( LSpan `  W
) `  ( F " ( dom  F  \  { x } ) ) ) ) )
5049notbid 308 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( -.  (
k ( .s `  X ) ( F `
 x ) )  e.  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) )  <->  -.  (
k ( .s `  W ) ( F `
 x ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) ) ) )
5134, 50raleqbidv 3152 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( A. k  e.  ( ( Base `  (Scalar `  X ) )  \  { ( 0g `  (Scalar `  X ) ) } )  -.  (
k ( .s `  X ) ( F `
 x ) )  e.  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) )  <->  A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 x ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) ) ) )
5251ralbidv 2986 . . . . 5  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  X ) )  \  { ( 0g `  (Scalar `  X ) ) } )  -.  (
k ( .s `  X ) ( F `
 x ) )  e.  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) )  <->  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 x ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) ) ) )
5325, 52anbi12d 747 . . . 4  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( ( F : dom  F --> ( Base `  X )  /\  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  X
) )  \  {
( 0g `  (Scalar `  X ) ) } )  -.  ( k ( .s `  X
) ( F `  x ) )  e.  ( ( LSpan `  X
) `  ( F " ( dom  F  \  { x } ) ) ) )  <->  ( F : dom  F --> ( Base `  W )  /\  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W
) )  \  {
( 0g `  (Scalar `  W ) ) } )  -.  ( k ( .s `  W
) ( F `  x ) )  e.  ( ( LSpan `  W
) `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
54 ovex 6678 . . . . . . 7  |-  ( Ws  S )  e.  _V
557, 54eqeltri 2697 . . . . . 6  |-  X  e. 
_V
5655a1i 11 . . . . 5  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  X  e.  _V )
57 eqid 2622 . . . . . 6  |-  ( Base `  X )  =  (
Base `  X )
58 eqid 2622 . . . . . 6  |-  ( .s
`  X )  =  ( .s `  X
)
59 eqid 2622 . . . . . 6  |-  (Scalar `  X )  =  (Scalar `  X )
60 eqid 2622 . . . . . 6  |-  ( Base `  (Scalar `  X )
)  =  ( Base `  (Scalar `  X )
)
61 eqid 2622 . . . . . 6  |-  ( 0g
`  (Scalar `  X )
)  =  ( 0g
`  (Scalar `  X )
)
6257, 58, 45, 59, 60, 61islindf 20151 . . . . 5  |-  ( ( X  e.  _V  /\  F  e.  _V )  ->  ( F LIndF  X  <->  ( F : dom  F --> ( Base `  X )  /\  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  X
) )  \  {
( 0g `  (Scalar `  X ) ) } )  -.  ( k ( .s `  X
) ( F `  x ) )  e.  ( ( LSpan `  X
) `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
6356, 62sylan 488 . . . 4  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( F LIndF  X  <->  ( F : dom  F --> ( Base `  X )  /\  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  X ) )  \  { ( 0g `  (Scalar `  X ) ) } )  -.  (
k ( .s `  X ) ( F `
 x ) )  e.  ( ( LSpan `  X ) `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
64 eqid 2622 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
65 eqid 2622 . . . . . 6  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
668, 35, 44, 27, 64, 65islindf 20151 . . . . 5  |-  ( ( W  e.  LMod  /\  F  e.  _V )  ->  ( F LIndF  W  <->  ( F : dom  F --> ( Base `  W
)  /\  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 x ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
67663ad2antl1 1223 . . . 4  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( F LIndF  W  <->  ( F : dom  F --> ( Base `  W )  /\  A. x  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 x ) )  e.  ( ( LSpan `  W ) `  ( F " ( dom  F  \  { x } ) ) ) ) ) )
6853, 63, 673bitr4d 300 . . 3  |-  ( ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  /\  F  e.  _V )  ->  ( F LIndF  X  <->  F LIndF 
W ) )
6968ex 450 . 2  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ( F  e.  _V  ->  ( F LIndF  X  <->  F LIndF  W ) ) )
703, 5, 69pm5.21ndd 369 1  |-  ( ( W  e.  LMod  /\  S  e.  U  /\  ran  F  C_  S )  ->  ( F LIndF  X  <->  F LIndF  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LIndF clindf 20143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lindf 20145
This theorem is referenced by:  lsslinds  20170
  Copyright terms: Public domain W3C validator