Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval4N Structured version   Visualization version   GIF version

Theorem mapdval4N 36921
Description: Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is 𝐶) 2. The unneeded direction of lcfl8a 36792 has awkward - add another thm with only one direction of it? 3. Swap 𝑂‘{𝑣} and 𝐿𝑓? (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdval4.h 𝐻 = (LHyp‘𝐾)
mapdval4.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval4.s 𝑆 = (LSubSp‘𝑈)
mapdval4.f 𝐹 = (LFnl‘𝑈)
mapdval4.l 𝐿 = (LKer‘𝑈)
mapdval4.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval4.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdval4.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdval4.t (𝜑𝑇𝑆)
Assertion
Ref Expression
mapdval4N (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
Distinct variable groups:   𝑣,𝑓,𝐹   𝑓,𝐾   𝑣,𝐿   𝑣,𝑂   𝑇,𝑓,𝑣   𝑣,𝑈   𝑓,𝑊   𝜑,𝑓,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑓)   𝑈(𝑓)   𝐻(𝑣,𝑓)   𝐾(𝑣)   𝐿(𝑓)   𝑀(𝑣,𝑓)   𝑂(𝑓)   𝑊(𝑣)

Proof of Theorem mapdval4N
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdval4.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdval4.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdval4.s . . 3 𝑆 = (LSubSp‘𝑈)
4 eqid 2622 . . 3 (LSpan‘𝑈) = (LSpan‘𝑈)
5 mapdval4.f . . 3 𝐹 = (LFnl‘𝑈)
6 mapdval4.l . . 3 𝐿 = (LKer‘𝑈)
7 mapdval4.o . . 3 𝑂 = ((ocH‘𝐾)‘𝑊)
8 mapdval4.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
9 mapdval4.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 mapdval4.t . . 3 (𝜑𝑇𝑆)
11 eqid 2622 . . 3 {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mapdval2N 36919 . 2 (𝜑 → (𝑀𝑇) = {𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})})
1311lcfl1lem 36780 . . . . . 6 (𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
1413anbi1i 731 . . . . 5 ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
15 anass 681 . . . . 5 (((𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))))
1614, 15bitri 264 . . . 4 ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))))
17 r19.42v 3092 . . . . . 6 (∃𝑣𝑇 ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
18 simprr 796 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))
1918fveq2d 6195 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂‘((LSpan‘𝑈)‘{𝑣})))
20 simprl 794 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
21 eqid 2622 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
229adantr 481 . . . . . . . . . . . 12 ((𝜑𝑓𝐹) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2322adantr 481 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2423adantr 481 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2510adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑓𝐹) → 𝑇𝑆)
2621, 3lssel 18938 . . . . . . . . . . . . 13 ((𝑇𝑆𝑣𝑇) → 𝑣 ∈ (Base‘𝑈))
2725, 26sylan 488 . . . . . . . . . . . 12 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → 𝑣 ∈ (Base‘𝑈))
2827snssd 4340 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → {𝑣} ⊆ (Base‘𝑈))
2928adantr 481 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → {𝑣} ⊆ (Base‘𝑈))
301, 2, 7, 21, 4, 24, 29dochocsp 36668 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘((LSpan‘𝑈)‘{𝑣})) = (𝑂‘{𝑣}))
3119, 20, 303eqtr3rd 2665 . . . . . . . 8 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘{𝑣}) = (𝐿𝑓))
3227adantr 481 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → 𝑣 ∈ (Base‘𝑈))
33 simpr 477 . . . . . . . . . . . 12 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘{𝑣}) = (𝐿𝑓))
3433eqcomd 2628 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝐿𝑓) = (𝑂‘{𝑣}))
35 sneq 4187 . . . . . . . . . . . . . 14 (𝑤 = 𝑣 → {𝑤} = {𝑣})
3635fveq2d 6195 . . . . . . . . . . . . 13 (𝑤 = 𝑣 → (𝑂‘{𝑤}) = (𝑂‘{𝑣}))
3736eqeq2d 2632 . . . . . . . . . . . 12 (𝑤 = 𝑣 → ((𝐿𝑓) = (𝑂‘{𝑤}) ↔ (𝐿𝑓) = (𝑂‘{𝑣})))
3837rspcev 3309 . . . . . . . . . . 11 ((𝑣 ∈ (Base‘𝑈) ∧ (𝐿𝑓) = (𝑂‘{𝑣})) → ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤}))
3932, 34, 38syl2anc 693 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤}))
4023adantr 481 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41 simpllr 799 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → 𝑓𝐹)
421, 7, 2, 21, 5, 6, 40, 41lcfl8a 36792 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ↔ ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤})))
4339, 42mpbird 247 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
441, 2, 7, 21, 4, 23, 27dochocsn 36670 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (𝑂‘(𝑂‘{𝑣})) = ((LSpan‘𝑈)‘{𝑣}))
45 fveq2 6191 . . . . . . . . . . 11 ((𝑂‘{𝑣}) = (𝐿𝑓) → (𝑂‘(𝑂‘{𝑣})) = (𝑂‘(𝐿𝑓)))
4644, 45sylan9req 2677 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((LSpan‘𝑈)‘{𝑣}) = (𝑂‘(𝐿𝑓)))
4746eqcomd 2628 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))
4843, 47jca 554 . . . . . . . 8 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
4931, 48impbida 877 . . . . . . 7 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑂‘{𝑣}) = (𝐿𝑓)))
5049rexbidva 3049 . . . . . 6 ((𝜑𝑓𝐹) → (∃𝑣𝑇 ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)))
5117, 50syl5bbr 274 . . . . 5 ((𝜑𝑓𝐹) → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)))
5251pm5.32da 673 . . . 4 (𝜑 → ((𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) ↔ (𝑓𝐹 ∧ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓))))
5316, 52syl5bb 272 . . 3 (𝜑 → ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓))))
5453rabbidva2 3186 . 2 (𝜑 → {𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})} = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
5512, 54eqtrd 2656 1 (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  wss 3574  {csn 4177  cfv 5888  Basecbs 15857  LSubSpclss 18932  LSpanclspn 18971  LFnlclfn 34344  LKerclk 34372  HLchlt 34637  LHypclh 35270  DVecHcdvh 36367  ocHcoch 36636  mapdcmpd 36913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lfl 34345  df-lkr 34373  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684  df-mapd 36914
This theorem is referenced by:  mapdval5N  36922  mapd1dim2lem1N  36933
  Copyright terms: Public domain W3C validator