Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval4N Structured version   Visualization version   Unicode version

Theorem mapdval4N 36921
Description: Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is  C_  C) 2. The unneeded direction of lcfl8a 36792 has awkward  E.- add another thm with only one direction of it? 3. Swap  O `  {
v } and  L `  f? (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdval4.h  |-  H  =  ( LHyp `  K
)
mapdval4.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdval4.s  |-  S  =  ( LSubSp `  U )
mapdval4.f  |-  F  =  (LFnl `  U )
mapdval4.l  |-  L  =  (LKer `  U )
mapdval4.o  |-  O  =  ( ( ocH `  K
) `  W )
mapdval4.m  |-  M  =  ( (mapd `  K
) `  W )
mapdval4.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdval4.t  |-  ( ph  ->  T  e.  S )
Assertion
Ref Expression
mapdval4N  |-  ( ph  ->  ( M `  T
)  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) } )
Distinct variable groups:    v, f, F    f, K    v, L    v, O    T, f, v    v, U    f, W    ph, f, v
Allowed substitution hints:    S( v, f)    U( f)    H( v, f)    K( v)    L( f)    M( v, f)    O( f)    W( v)

Proof of Theorem mapdval4N
Dummy variables  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdval4.h . . 3  |-  H  =  ( LHyp `  K
)
2 mapdval4.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 mapdval4.s . . 3  |-  S  =  ( LSubSp `  U )
4 eqid 2622 . . 3  |-  ( LSpan `  U )  =  (
LSpan `  U )
5 mapdval4.f . . 3  |-  F  =  (LFnl `  U )
6 mapdval4.l . . 3  |-  L  =  (LKer `  U )
7 mapdval4.o . . 3  |-  O  =  ( ( ocH `  K
) `  W )
8 mapdval4.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
9 mapdval4.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
10 mapdval4.t . . 3  |-  ( ph  ->  T  e.  S )
11 eqid 2622 . . 3  |-  { g  e.  F  |  ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g ) }  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mapdval2N 36919 . 2  |-  ( ph  ->  ( M `  T
)  =  { f  e.  { g  e.  F  |  ( O `
 ( O `  ( L `  g ) ) )  =  ( L `  g ) }  |  E. v  e.  T  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) } )
1311lcfl1lem 36780 . . . . . 6  |-  ( f  e.  { g  e.  F  |  ( O `
 ( O `  ( L `  g ) ) )  =  ( L `  g ) }  <->  ( f  e.  F  /\  ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f ) ) )
1413anbi1i 731 . . . . 5  |-  ( ( f  e.  { g  e.  F  |  ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g ) }  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <-> 
( ( f  e.  F  /\  ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f ) )  /\  E. v  e.  T  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )
15 anass 681 . . . . 5  |-  ( ( ( f  e.  F  /\  ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f ) )  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <-> 
( f  e.  F  /\  ( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) ) ) )
1614, 15bitri 264 . . . 4  |-  ( ( f  e.  { g  e.  F  |  ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g ) }  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <-> 
( f  e.  F  /\  ( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) ) ) )
17 r19.42v 3092 . . . . . 6  |-  ( E. v  e.  T  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  =  ( ( LSpan `  U
) `  { v } ) )  <->  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  E. v  e.  T  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )
18 simprr 796 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  ( L `  f ) )  =  ( ( LSpan `  U
) `  { v } ) )
1918fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  ( O `  ( L `  f
) ) )  =  ( O `  (
( LSpan `  U ) `  { v } ) ) )
20 simprl 794 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
) )
21 eqid 2622 . . . . . . . . . 10  |-  ( Base `  U )  =  (
Base `  U )
229adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  F )  ->  ( K  e.  HL  /\  W  e.  H ) )
2322adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
2423adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2510adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  F )  ->  T  e.  S )
2621, 3lssel 18938 . . . . . . . . . . . . 13  |-  ( ( T  e.  S  /\  v  e.  T )  ->  v  e.  ( Base `  U ) )
2725, 26sylan 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  v  e.  ( Base `  U
) )
2827snssd 4340 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  { v }  C_  ( Base `  U ) )
2928adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  { v }  C_  ( Base `  U ) )
301, 2, 7, 21, 4, 24, 29dochocsp 36668 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  ( ( LSpan `  U ) `  { v } ) )  =  ( O `
 { v } ) )
3119, 20, 303eqtr3rd 2665 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  { v } )  =  ( L `  f ) )
3227adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
v  e.  ( Base `  U ) )
33 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( O `  {
v } )  =  ( L `  f
) )
3433eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( L `  f
)  =  ( O `
 { v } ) )
35 sneq 4187 . . . . . . . . . . . . . 14  |-  ( w  =  v  ->  { w }  =  { v } )
3635fveq2d 6195 . . . . . . . . . . . . 13  |-  ( w  =  v  ->  ( O `  { w } )  =  ( O `  { v } ) )
3736eqeq2d 2632 . . . . . . . . . . . 12  |-  ( w  =  v  ->  (
( L `  f
)  =  ( O `
 { w }
)  <->  ( L `  f )  =  ( O `  { v } ) ) )
3837rspcev 3309 . . . . . . . . . . 11  |-  ( ( v  e.  ( Base `  U )  /\  ( L `  f )  =  ( O `  { v } ) )  ->  E. w  e.  ( Base `  U
) ( L `  f )  =  ( O `  { w } ) )
3932, 34, 38syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  ->  E. w  e.  ( Base `  U ) ( L `  f )  =  ( O `  { w } ) )
4023adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
41 simpllr 799 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
f  e.  F )
421, 7, 2, 21, 5, 6, 40, 41lcfl8a 36792 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  <->  E. w  e.  ( Base `  U
) ( L `  f )  =  ( O `  { w } ) ) )
4339, 42mpbird 247 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f ) )
441, 2, 7, 21, 4, 23, 27dochocsn 36670 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  ( O `  ( O `  { v } ) )  =  ( (
LSpan `  U ) `  { v } ) )
45 fveq2 6191 . . . . . . . . . . 11  |-  ( ( O `  { v } )  =  ( L `  f )  ->  ( O `  ( O `  { v } ) )  =  ( O `  ( L `  f )
) )
4644, 45sylan9req 2677 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( ( LSpan `  U
) `  { v } )  =  ( O `  ( L `
 f ) ) )
4746eqcomd 2628 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( O `  ( L `  f )
)  =  ( (
LSpan `  U ) `  { v } ) )
4843, 47jca 554 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) ) )
4931, 48impbida 877 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  (
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <-> 
( O `  {
v } )  =  ( L `  f
) ) )
5049rexbidva 3049 . . . . . 6  |-  ( (
ph  /\  f  e.  F )  ->  ( E. v  e.  T  ( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <->  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) )
5117, 50syl5bbr 274 . . . . 5  |-  ( (
ph  /\  f  e.  F )  ->  (
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <->  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) )
5251pm5.32da 673 . . . 4  |-  ( ph  ->  ( ( f  e.  F  /\  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  E. v  e.  T  ( O `  ( L `  f ) )  =  ( ( LSpan `  U
) `  { v } ) ) )  <-> 
( f  e.  F  /\  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) ) )
5316, 52syl5bb 272 . . 3  |-  ( ph  ->  ( ( f  e. 
{ g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }  /\  E. v  e.  T  ( O `  ( L `  f ) )  =  ( (
LSpan `  U ) `  { v } ) )  <->  ( f  e.  F  /\  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) ) )
5453rabbidva2 3186 . 2  |-  ( ph  ->  { f  e.  {
g  e.  F  | 
( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }  |  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) }  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) } )
5512, 54eqtrd 2656 1  |-  ( ph  ->  ( M `  T
)  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    C_ wss 3574   {csn 4177   ` cfv 5888   Basecbs 15857   LSubSpclss 18932   LSpanclspn 18971  LFnlclfn 34344  LKerclk 34372   HLchlt 34637   LHypclh 35270   DVecHcdvh 36367   ocHcoch 36636  mapdcmpd 36913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lfl 34345  df-lkr 34373  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684  df-mapd 36914
This theorem is referenced by:  mapdval5N  36922  mapd1dim2lem1N  36933
  Copyright terms: Public domain W3C validator