Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosknegpi Structured version   Visualization version   GIF version

Theorem cosknegpi 40080
Description: The cosine of an integer multiple of negative π is either 1 ore negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
cosknegpi (𝐾 ∈ ℤ → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))

Proof of Theorem cosknegpi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → 2 ∥ 𝐾)
2 2z 11409 . . . . 5 2 ∈ ℤ
3 simpl 473 . . . . 5 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → 𝐾 ∈ ℤ)
4 divides 14985 . . . . 5 ((2 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
52, 3, 4sylancr 695 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾))
61, 5mpbid 222 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾)
7 zcn 11382 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
8 negcl 10281 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → -𝑛 ∈ ℂ)
9 2cn 11091 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
10 picn 24211 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
119, 10mulcli 10045 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
1211a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (2 · π) ∈ ℂ)
138, 12mulcld 10060 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-𝑛 · (2 · π)) ∈ ℂ)
1413addid2d 10237 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (0 + (-𝑛 · (2 · π))) = (-𝑛 · (2 · π)))
15 2cnd 11093 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → 2 ∈ ℂ)
1610a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → π ∈ ℂ)
178, 15, 16mulassd 10063 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → ((-𝑛 · 2) · π) = (-𝑛 · (2 · π)))
1817eqcomd 2628 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (-𝑛 · (2 · π)) = ((-𝑛 · 2) · π))
19 id 22 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → 𝑛 ∈ ℂ)
2019, 15mulneg1d 10483 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-𝑛 · 2) = -(𝑛 · 2))
2120oveq1d 6665 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → ((-𝑛 · 2) · π) = (-(𝑛 · 2) · π))
2214, 18, 213eqtrd 2660 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
237, 22syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
2423adantr 481 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (0 + (-𝑛 · (2 · π))) = (-(𝑛 · 2) · π))
2519, 15mulcld 10060 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (𝑛 · 2) ∈ ℂ)
26 mulneg12 10468 . . . . . . . . . . . . 13 (((𝑛 · 2) ∈ ℂ ∧ π ∈ ℂ) → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
2725, 16, 26syl2anc 693 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
287, 27syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
2928adantr 481 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (-(𝑛 · 2) · π) = ((𝑛 · 2) · -π))
30 oveq1 6657 . . . . . . . . . . 11 ((𝑛 · 2) = 𝐾 → ((𝑛 · 2) · -π) = (𝐾 · -π))
3130adantl 482 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → ((𝑛 · 2) · -π) = (𝐾 · -π))
3224, 29, 313eqtrrd 2661 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (𝐾 · -π) = (0 + (-𝑛 · (2 · π))))
3332fveq2d 6195 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(0 + (-𝑛 · (2 · π)))))
34333adant1 1079 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(0 + (-𝑛 · (2 · π)))))
35 0cnd 10033 . . . . . . . . 9 (𝑛 ∈ ℤ → 0 ∈ ℂ)
36 znegcl 11412 . . . . . . . . 9 (𝑛 ∈ ℤ → -𝑛 ∈ ℤ)
37 cosper 24234 . . . . . . . . 9 ((0 ∈ ℂ ∧ -𝑛 ∈ ℤ) → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
3835, 36, 37syl2anc 693 . . . . . . . 8 (𝑛 ∈ ℤ → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
39383ad2ant2 1083 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(0 + (-𝑛 · (2 · π)))) = (cos‘0))
40 iftrue 4092 . . . . . . . . 9 (2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = 1)
41 cos0 14880 . . . . . . . . 9 (cos‘0) = 1
4240, 41syl6reqr 2675 . . . . . . . 8 (2 ∥ 𝐾 → (cos‘0) = if(2 ∥ 𝐾, 1, -1))
43423ad2ant1 1082 . . . . . . 7 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘0) = if(2 ∥ 𝐾, 1, -1))
4434, 39, 433eqtrd 2660 . . . . . 6 ((2 ∥ 𝐾𝑛 ∈ ℤ ∧ (𝑛 · 2) = 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
45443exp 1264 . . . . 5 (2 ∥ 𝐾 → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))))
4645adantl 482 . . . 4 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))))
4746rexlimdv 3030 . . 3 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1)))
486, 47mpd 15 . 2 ((𝐾 ∈ ℤ ∧ 2 ∥ 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
49 odd2np1 15065 . . . 4 (𝐾 ∈ ℤ → (¬ 2 ∥ 𝐾 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾))
5049biimpa 501 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾)
51 oveq1 6657 . . . . . . . . . . 11 (((2 · 𝑛) + 1) = 𝐾 → (((2 · 𝑛) + 1) · -π) = (𝐾 · -π))
5251eqcomd 2628 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝐾 → (𝐾 · -π) = (((2 · 𝑛) + 1) · -π))
5352adantl 482 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (((2 · 𝑛) + 1) · -π))
5415, 19mulcld 10060 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (2 · 𝑛) ∈ ℂ)
55 1cnd 10056 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → 1 ∈ ℂ)
56 negpicn 24214 . . . . . . . . . . . . 13 -π ∈ ℂ
5756a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → -π ∈ ℂ)
5854, 55, 57adddird 10065 . . . . . . . . . . 11 (𝑛 ∈ ℂ → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
597, 58syl 17 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
6059adantr 481 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) + 1) · -π) = (((2 · 𝑛) · -π) + (1 · -π)))
61 mulneg12 10468 . . . . . . . . . . . . . . . 16 (((2 · 𝑛) ∈ ℂ ∧ π ∈ ℂ) → (-(2 · 𝑛) · π) = ((2 · 𝑛) · -π))
6254, 16, 61syl2anc 693 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → (-(2 · 𝑛) · π) = ((2 · 𝑛) · -π))
6362eqcomd 2628 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → ((2 · 𝑛) · -π) = (-(2 · 𝑛) · π))
6415, 19mulneg2d 10484 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℂ → (2 · -𝑛) = -(2 · 𝑛))
6515, 8mulcomd 10061 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℂ → (2 · -𝑛) = (-𝑛 · 2))
6664, 65eqtr3d 2658 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℂ → -(2 · 𝑛) = (-𝑛 · 2))
6766oveq1d 6665 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (-(2 · 𝑛) · π) = ((-𝑛 · 2) · π))
6863, 67, 173eqtrd 2660 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → ((2 · 𝑛) · -π) = (-𝑛 · (2 · π)))
6957mulid2d 10058 . . . . . . . . . . . . 13 (𝑛 ∈ ℂ → (1 · -π) = -π)
7068, 69oveq12d 6668 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → (((2 · 𝑛) · -π) + (1 · -π)) = ((-𝑛 · (2 · π)) + -π))
7113, 57addcomd 10238 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → ((-𝑛 · (2 · π)) + -π) = (-π + (-𝑛 · (2 · π))))
7270, 71eqtrd 2656 . . . . . . . . . . 11 (𝑛 ∈ ℂ → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
737, 72syl 17 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
7473adantr 481 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (((2 · 𝑛) · -π) + (1 · -π)) = (-π + (-𝑛 · (2 · π))))
7553, 60, 743eqtrd 2660 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (-π + (-𝑛 · (2 · π))))
76753adant1 1079 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (𝐾 · -π) = (-π + (-𝑛 · (2 · π))))
7776fveq2d 6195 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(-π + (-𝑛 · (2 · π)))))
78773adant1r 1319 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = (cos‘(-π + (-𝑛 · (2 · π)))))
79 cosper 24234 . . . . . . 7 ((-π ∈ ℂ ∧ -𝑛 ∈ ℤ) → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
8056, 36, 79sylancr 695 . . . . . 6 (𝑛 ∈ ℤ → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
81803ad2ant2 1083 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(-π + (-𝑛 · (2 · π)))) = (cos‘-π))
82 iffalse 4095 . . . . . . . 8 (¬ 2 ∥ 𝐾 → if(2 ∥ 𝐾, 1, -1) = -1)
83 cosnegpi 40078 . . . . . . . 8 (cos‘-π) = -1
8482, 83syl6reqr 2675 . . . . . . 7 (¬ 2 ∥ 𝐾 → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
8584adantl 482 . . . . . 6 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
86853ad2ant1 1082 . . . . 5 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘-π) = if(2 ∥ 𝐾, 1, -1))
8778, 81, 863eqtrd 2660 . . . 4 (((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) ∧ 𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
8887rexlimdv3a 3033 . . 3 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝐾 → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1)))
8950, 88mpd 15 . 2 ((𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾) → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
9048, 89pm2.61dan 832 1 (𝐾 ∈ ℤ → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267  2c2 11070  cz 11377  cosccos 14795  πcpi 14797  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  sqwvfourb  40446
  Copyright terms: Public domain W3C validator