MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem5 Structured version   Visualization version   GIF version

Theorem ftalem5 24803
Description: Lemma for fta 24806: Main proof. We have already shifted the minimum found in ftalem3 24801 to zero by a change of variables, and now we show that the minimum value is zero. Expanding in a series about the minimum value, let 𝐾 be the lowest term in the polynomial that is nonzero, and let 𝑇 be a 𝐾-th root of -𝐹(0) / 𝐴(𝐾). Then an evaluation of 𝐹(𝑇𝑋) where 𝑋 is a sufficiently small positive number yields 𝐹(0) for the first term and -𝐹(0) · 𝑋𝐾 for the 𝐾-th term, and all higher terms are bounded because 𝑋 is small. Thus, abs(𝐹(𝑇𝑋)) ≤ abs(𝐹(0))(1 − 𝑋𝐾) < abs(𝐹(0)), in contradiction to our choice of 𝐹(0) as the minimum. (Contributed by Mario Carneiro, 14-Sep-2014.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem4.5 (𝜑 → (𝐹‘0) ≠ 0)
ftalem4.6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
ftalem4.7 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
ftalem4.8 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
ftalem4.9 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
Assertion
Ref Expression
ftalem5 (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
Distinct variable groups:   𝑘,𝑛,𝑥,𝐴   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛,𝑥   𝑘,𝐹,𝑛,𝑥   𝜑,𝑘,𝑥   𝑆,𝑘   𝑇,𝑘,𝑥   𝑥,𝑈   𝑘,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑥,𝑛)   𝑇(𝑛)   𝑈(𝑘,𝑛)   𝐾(𝑥)

Proof of Theorem ftalem5
StepHypRef Expression
1 ftalem.1 . . . . . 6 𝐴 = (coeff‘𝐹)
2 ftalem.2 . . . . . 6 𝑁 = (deg‘𝐹)
3 ftalem.3 . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.4 . . . . . 6 (𝜑𝑁 ∈ ℕ)
5 ftalem4.5 . . . . . 6 (𝜑 → (𝐹‘0) ≠ 0)
6 ftalem4.6 . . . . . 6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
7 ftalem4.7 . . . . . 6 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
8 ftalem4.8 . . . . . 6 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
9 ftalem4.9 . . . . . 6 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
101, 2, 3, 4, 5, 6, 7, 8, 9ftalem4 24802 . . . . 5 (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+)))
1110simprd 479 . . . 4 (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+))
1211simp1d 1073 . . 3 (𝜑𝑇 ∈ ℂ)
1311simp3d 1075 . . . . 5 (𝜑𝑋 ∈ ℝ+)
1413rpred 11872 . . . 4 (𝜑𝑋 ∈ ℝ)
1514recnd 10068 . . 3 (𝜑𝑋 ∈ ℂ)
1612, 15mulcld 10060 . 2 (𝜑 → (𝑇 · 𝑋) ∈ ℂ)
17 plyf 23954 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
183, 17syl 17 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
1918, 16ffvelrnd 6360 . . . 4 (𝜑 → (𝐹‘(𝑇 · 𝑋)) ∈ ℂ)
2019abscld 14175 . . 3 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) ∈ ℝ)
21 0cn 10032 . . . . . . 7 0 ∈ ℂ
22 ffvelrn 6357 . . . . . . 7 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
2318, 21, 22sylancl 694 . . . . . 6 (𝜑 → (𝐹‘0) ∈ ℂ)
2423abscld 14175 . . . . 5 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ)
2510simpld 475 . . . . . . . . 9 (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0))
2625simpld 475 . . . . . . . 8 (𝜑𝐾 ∈ ℕ)
2726nnnn0d 11351 . . . . . . 7 (𝜑𝐾 ∈ ℕ0)
2814, 27reexpcld 13025 . . . . . 6 (𝜑 → (𝑋𝐾) ∈ ℝ)
2924, 28remulcld 10070 . . . . 5 (𝜑 → ((abs‘(𝐹‘0)) · (𝑋𝐾)) ∈ ℝ)
3024, 29resubcld 10458 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) ∈ ℝ)
31 fzfid 12772 . . . . . 6 (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin)
32 peano2nn0 11333 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
3327, 32syl 17 . . . . . . . . 9 (𝜑 → (𝐾 + 1) ∈ ℕ0)
34 elfzuz 12338 . . . . . . . . 9 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
35 eluznn0 11757 . . . . . . . . 9 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ0)
3633, 34, 35syl2an 494 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0)
371coef3 23988 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
383, 37syl 17 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
39 ffvelrn 6357 . . . . . . . . 9 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4038, 39sylan 488 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4136, 40syldan 487 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴𝑘) ∈ ℂ)
4216adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇 · 𝑋) ∈ ℂ)
4342, 36expcld 13008 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
4441, 43mulcld 10060 . . . . . 6 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
4531, 44fsumcl 14464 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
4645abscld 14175 . . . 4 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
4730, 46readdcld 10069 . . 3 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) ∈ ℝ)
48 fzfid 12772 . . . . . 6 (𝜑 → (0...𝐾) ∈ Fin)
49 elfznn0 12433 . . . . . . . 8 (𝑘 ∈ (0...𝐾) → 𝑘 ∈ ℕ0)
5038, 49, 39syl2an 494 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝐾)) → (𝐴𝑘) ∈ ℂ)
51 expcl 12878 . . . . . . . 8 (((𝑇 · 𝑋) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
5216, 49, 51syl2an 494 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝐾)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
5350, 52mulcld 10060 . . . . . 6 ((𝜑𝑘 ∈ (0...𝐾)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
5448, 53fsumcl 14464 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
5554, 45abstrid 14195 . . . 4 (𝜑 → (abs‘(Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) ≤ ((abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
561, 2coeid2 23995 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑇 · 𝑋) ∈ ℂ) → (𝐹‘(𝑇 · 𝑋)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))
573, 16, 56syl2anc 693 . . . . . 6 (𝜑 → (𝐹‘(𝑇 · 𝑋)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))
5826nnred 11035 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
5958ltp1d 10954 . . . . . . . 8 (𝜑𝐾 < (𝐾 + 1))
60 fzdisj 12368 . . . . . . . 8 (𝐾 < (𝐾 + 1) → ((0...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
6159, 60syl 17 . . . . . . 7 (𝜑 → ((0...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
62 ssrab2 3687 . . . . . . . . . . . 12 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℕ
63 nnuz 11723 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
6462, 63sseqtri 3637 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1)
654nnne0d 11065 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
662, 1dgreq0 24021 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
673, 66syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
68 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
69 dgr0 24018 . . . . . . . . . . . . . . . . 17 (deg‘0𝑝) = 0
7068, 69syl6eq 2672 . . . . . . . . . . . . . . . 16 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
712, 70syl5eq 2668 . . . . . . . . . . . . . . 15 (𝐹 = 0𝑝𝑁 = 0)
7267, 71syl6bir 244 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
7372necon3d 2815 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
7465, 73mpd 15 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑁) ≠ 0)
75 fveq2 6191 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
7675neeq1d 2853 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑁) ≠ 0))
7776elrab 3363 . . . . . . . . . . . 12 (𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝑁 ∈ ℕ ∧ (𝐴𝑁) ≠ 0))
784, 74, 77sylanbrc 698 . . . . . . . . . . 11 (𝜑𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
79 infssuzle 11771 . . . . . . . . . . 11 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑁)
8064, 78, 79sylancr 695 . . . . . . . . . 10 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑁)
816, 80syl5eqbr 4688 . . . . . . . . 9 (𝜑𝐾𝑁)
82 nn0uz 11722 . . . . . . . . . . 11 0 = (ℤ‘0)
8327, 82syl6eleq 2711 . . . . . . . . . 10 (𝜑𝐾 ∈ (ℤ‘0))
844nnzd 11481 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
85 elfz5 12334 . . . . . . . . . 10 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
8683, 84, 85syl2anc 693 . . . . . . . . 9 (𝜑 → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
8781, 86mpbird 247 . . . . . . . 8 (𝜑𝐾 ∈ (0...𝑁))
88 fzsplit 12367 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (0...𝑁) = ((0...𝐾) ∪ ((𝐾 + 1)...𝑁)))
8987, 88syl 17 . . . . . . 7 (𝜑 → (0...𝑁) = ((0...𝐾) ∪ ((𝐾 + 1)...𝑁)))
90 fzfid 12772 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
91 elfznn0 12433 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9238, 91, 39syl2an 494 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
9316, 91, 51syl2an 494 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
9492, 93mulcld 10060 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
9561, 89, 90, 94fsumsplit 14471 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
9657, 95eqtrd 2656 . . . . 5 (𝜑 → (𝐹‘(𝑇 · 𝑋)) = (Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
9796fveq2d 6195 . . . 4 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) = (abs‘(Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
981coefv0 24004 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
993, 98syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹‘0) = (𝐴‘0))
10099eqcomd 2628 . . . . . . . . . . 11 (𝜑 → (𝐴‘0) = (𝐹‘0))
10116exp0d 13002 . . . . . . . . . . 11 (𝜑 → ((𝑇 · 𝑋)↑0) = 1)
102100, 101oveq12d 6668 . . . . . . . . . 10 (𝜑 → ((𝐴‘0) · ((𝑇 · 𝑋)↑0)) = ((𝐹‘0) · 1))
10323mulid1d 10057 . . . . . . . . . 10 (𝜑 → ((𝐹‘0) · 1) = (𝐹‘0))
104102, 103eqtrd 2656 . . . . . . . . 9 (𝜑 → ((𝐴‘0) · ((𝑇 · 𝑋)↑0)) = (𝐹‘0))
105 1e0p1 11552 . . . . . . . . . . . . 13 1 = (0 + 1)
106105oveq1i 6660 . . . . . . . . . . . 12 (1...𝐾) = ((0 + 1)...𝐾)
107106sumeq1i 14428 . . . . . . . . . . 11 Σ𝑘 ∈ (1...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))
10826, 63syl6eleq 2711 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (ℤ‘1))
109 elfznn 12370 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℕ)
110109nnnn0d 11351 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℕ0)
11138, 110, 39syl2an 494 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝐾)) → (𝐴𝑘) ∈ ℂ)
11216, 110, 51syl2an 494 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝐾)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
113111, 112mulcld 10060 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝐾)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
114 fveq2 6191 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (𝐴𝑘) = (𝐴𝐾))
115 oveq2 6658 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → ((𝑇 · 𝑋)↑𝑘) = ((𝑇 · 𝑋)↑𝐾))
116114, 115oveq12d 6668 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)))
117108, 113, 116fsumm1 14480 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (1...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))))
118107, 117syl5eqr 2670 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))))
119 elfznn 12370 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ∈ ℕ)
120119adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ∈ ℕ)
121120nnred 11035 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ∈ ℝ)
12258adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝐾 ∈ ℝ)
123 peano2rem 10348 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
124122, 123syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
125 elfzle2 12345 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ≤ (𝐾 − 1))
126125adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ≤ (𝐾 − 1))
127122ltm1d 10956 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) < 𝐾)
128121, 124, 122, 126, 127lelttrd 10195 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 < 𝐾)
129121, 122ltnled 10184 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝑘 < 𝐾 ↔ ¬ 𝐾𝑘))
130128, 129mpbid 222 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ¬ 𝐾𝑘)
131 infssuzle 11771 . . . . . . . . . . . . . . . . . . 19 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑘)
1326, 131syl5eqbr 4688 . . . . . . . . . . . . . . . . . 18 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → 𝐾𝑘)
13364, 132mpan 706 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} → 𝐾𝑘)
134130, 133nsyl 135 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ¬ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
135 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
136135neeq1d 2853 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑘) ≠ 0))
137136elrab3 3364 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐴𝑘) ≠ 0))
138120, 137syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐴𝑘) ≠ 0))
139138necon2bbid 2837 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) = 0 ↔ ¬ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}))
140134, 139mpbird 247 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐴𝑘) = 0)
141140oveq1d 6665 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (0 · ((𝑇 · 𝑋)↑𝑘)))
142119nnnn0d 11351 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
14316, 142, 51syl2an 494 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
144143mul02d 10234 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (0 · ((𝑇 · 𝑋)↑𝑘)) = 0)
145141, 144eqtrd 2656 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = 0)
146145sumeq2dv 14433 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = Σ𝑘 ∈ (1...(𝐾 − 1))0)
147 fzfi 12771 . . . . . . . . . . . . . 14 (1...(𝐾 − 1)) ∈ Fin
148147olci 406 . . . . . . . . . . . . 13 ((1...(𝐾 − 1)) ⊆ (ℤ‘1) ∨ (1...(𝐾 − 1)) ∈ Fin)
149 sumz 14453 . . . . . . . . . . . . 13 (((1...(𝐾 − 1)) ⊆ (ℤ‘1) ∨ (1...(𝐾 − 1)) ∈ Fin) → Σ𝑘 ∈ (1...(𝐾 − 1))0 = 0)
150148, 149ax-mp 5 . . . . . . . . . . . 12 Σ𝑘 ∈ (1...(𝐾 − 1))0 = 0
151146, 150syl6eq 2672 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = 0)
15212, 15, 27mulexpd 13023 . . . . . . . . . . . . . 14 (𝜑 → ((𝑇 · 𝑋)↑𝐾) = ((𝑇𝐾) · (𝑋𝐾)))
153152oveq2d 6666 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = ((𝐴𝐾) · ((𝑇𝐾) · (𝑋𝐾))))
15438, 27ffvelrnd 6360 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐾) ∈ ℂ)
15512, 27expcld 13008 . . . . . . . . . . . . . 14 (𝜑 → (𝑇𝐾) ∈ ℂ)
15628recnd 10068 . . . . . . . . . . . . . 14 (𝜑 → (𝑋𝐾) ∈ ℂ)
157154, 155, 156mulassd 10063 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)) = ((𝐴𝐾) · ((𝑇𝐾) · (𝑋𝐾))))
158153, 157eqtr4d 2659 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)))
1597oveq1i 6660 . . . . . . . . . . . . . . . 16 (𝑇𝐾) = ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾)
16058recnd 10068 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℂ)
16126nnne0d 11065 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ≠ 0)
162160, 161recid2d 10797 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 / 𝐾) · 𝐾) = 1)
163162oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐((1 / 𝐾) · 𝐾)) = (-((𝐹‘0) / (𝐴𝐾))↑𝑐1))
16425simprd 479 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴𝐾) ≠ 0)
16523, 154, 164divcld 10801 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
166165negcld 10379 . . . . . . . . . . . . . . . . . 18 (𝜑 → -((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
16726nnrecred 11066 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 / 𝐾) ∈ ℝ)
168167recnd 10068 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 / 𝐾) ∈ ℂ)
169166, 168, 27cxpmul2d 24455 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐((1 / 𝐾) · 𝐾)) = ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾))
170166cxp1d 24452 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐1) = -((𝐹‘0) / (𝐴𝐾)))
171163, 169, 1703eqtr3d 2664 . . . . . . . . . . . . . . . 16 (𝜑 → ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾) = -((𝐹‘0) / (𝐴𝐾)))
172159, 171syl5eq 2668 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇𝐾) = -((𝐹‘0) / (𝐴𝐾)))
173172oveq2d 6666 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐾) · (𝑇𝐾)) = ((𝐴𝐾) · -((𝐹‘0) / (𝐴𝐾))))
174154, 165mulneg2d 10484 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐾) · -((𝐹‘0) / (𝐴𝐾))) = -((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))))
17523, 154, 164divcan2d 10803 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))) = (𝐹‘0))
176175negeqd 10275 . . . . . . . . . . . . . 14 (𝜑 → -((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))) = -(𝐹‘0))
177173, 174, 1763eqtrd 2660 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) · (𝑇𝐾)) = -(𝐹‘0))
178177oveq1d 6665 . . . . . . . . . . . 12 (𝜑 → (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)) = (-(𝐹‘0) · (𝑋𝐾)))
17923, 156mulneg1d 10483 . . . . . . . . . . . 12 (𝜑 → (-(𝐹‘0) · (𝑋𝐾)) = -((𝐹‘0) · (𝑋𝐾)))
180158, 178, 1793eqtrd 2660 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = -((𝐹‘0) · (𝑋𝐾)))
181151, 180oveq12d 6668 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))) = (0 + -((𝐹‘0) · (𝑋𝐾))))
18223, 156mulcld 10060 . . . . . . . . . . . 12 (𝜑 → ((𝐹‘0) · (𝑋𝐾)) ∈ ℂ)
183182negcld 10379 . . . . . . . . . . 11 (𝜑 → -((𝐹‘0) · (𝑋𝐾)) ∈ ℂ)
184183addid2d 10237 . . . . . . . . . 10 (𝜑 → (0 + -((𝐹‘0) · (𝑋𝐾))) = -((𝐹‘0) · (𝑋𝐾)))
185118, 181, 1843eqtrd 2660 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = -((𝐹‘0) · (𝑋𝐾)))
186104, 185oveq12d 6668 . . . . . . . 8 (𝜑 → (((𝐴‘0) · ((𝑇 · 𝑋)↑0)) + Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))))
187 fveq2 6191 . . . . . . . . . 10 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
188 oveq2 6658 . . . . . . . . . 10 (𝑘 = 0 → ((𝑇 · 𝑋)↑𝑘) = ((𝑇 · 𝑋)↑0))
189187, 188oveq12d 6668 . . . . . . . . 9 (𝑘 = 0 → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴‘0) · ((𝑇 · 𝑋)↑0)))
19083, 53, 189fsum1p 14482 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (((𝐴‘0) · ((𝑇 · 𝑋)↑0)) + Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
191103oveq1d 6665 . . . . . . . . 9 (𝜑 → (((𝐹‘0) · 1) − ((𝐹‘0) · (𝑋𝐾))) = ((𝐹‘0) − ((𝐹‘0) · (𝑋𝐾))))
192 1cnd 10056 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
19323, 192, 156subdid 10486 . . . . . . . . 9 (𝜑 → ((𝐹‘0) · (1 − (𝑋𝐾))) = (((𝐹‘0) · 1) − ((𝐹‘0) · (𝑋𝐾))))
19423, 182negsubd 10398 . . . . . . . . 9 (𝜑 → ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))) = ((𝐹‘0) − ((𝐹‘0) · (𝑋𝐾))))
195191, 193, 1943eqtr4d 2666 . . . . . . . 8 (𝜑 → ((𝐹‘0) · (1 − (𝑋𝐾))) = ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))))
196186, 190, 1953eqtr4d 2666 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐹‘0) · (1 − (𝑋𝐾))))
197196fveq2d 6195 . . . . . 6 (𝜑 → (abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = (abs‘((𝐹‘0) · (1 − (𝑋𝐾)))))
198 1re 10039 . . . . . . . . 9 1 ∈ ℝ
199 resubcl 10345 . . . . . . . . 9 ((1 ∈ ℝ ∧ (𝑋𝐾) ∈ ℝ) → (1 − (𝑋𝐾)) ∈ ℝ)
200198, 28, 199sylancr 695 . . . . . . . 8 (𝜑 → (1 − (𝑋𝐾)) ∈ ℝ)
201200recnd 10068 . . . . . . 7 (𝜑 → (1 − (𝑋𝐾)) ∈ ℂ)
20223, 201absmuld 14193 . . . . . 6 (𝜑 → (abs‘((𝐹‘0) · (1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))))
20313rpge0d 11876 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑋)
20411simp2d 1074 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℝ+)
205204rpred 11872 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ)
206 min1 12020 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(1 ≤ 𝑈, 1, 𝑈) ≤ 1)
207198, 205, 206sylancr 695 . . . . . . . . . . . 12 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ≤ 1)
2089, 207syl5eqbr 4688 . . . . . . . . . . 11 (𝜑𝑋 ≤ 1)
209 exple1 12920 . . . . . . . . . . 11 (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) ∧ 𝐾 ∈ ℕ0) → (𝑋𝐾) ≤ 1)
21014, 203, 208, 27, 209syl31anc 1329 . . . . . . . . . 10 (𝜑 → (𝑋𝐾) ≤ 1)
211 subge0 10541 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (𝑋𝐾) ∈ ℝ) → (0 ≤ (1 − (𝑋𝐾)) ↔ (𝑋𝐾) ≤ 1))
212198, 28, 211sylancr 695 . . . . . . . . . 10 (𝜑 → (0 ≤ (1 − (𝑋𝐾)) ↔ (𝑋𝐾) ≤ 1))
213210, 212mpbird 247 . . . . . . . . 9 (𝜑 → 0 ≤ (1 − (𝑋𝐾)))
214200, 213absidd 14161 . . . . . . . 8 (𝜑 → (abs‘(1 − (𝑋𝐾))) = (1 − (𝑋𝐾)))
215214oveq2d 6666 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) · (1 − (𝑋𝐾))))
21624recnd 10068 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘0)) ∈ ℂ)
217216, 192, 156subdid 10486 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘0)) · (1 − (𝑋𝐾))) = (((abs‘(𝐹‘0)) · 1) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
218216mulid1d 10057 . . . . . . . 8 (𝜑 → ((abs‘(𝐹‘0)) · 1) = (abs‘(𝐹‘0)))
219218oveq1d 6665 . . . . . . 7 (𝜑 → (((abs‘(𝐹‘0)) · 1) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) = ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
220215, 217, 2193eqtrd 2660 . . . . . 6 (𝜑 → ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
221197, 202, 2203eqtrrd 2661 . . . . 5 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) = (abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
222221oveq1d 6665 . . . 4 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) = ((abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
22355, 97, 2223brtr4d 4685 . . 3 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) ≤ (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
22444abscld 14175 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
22531, 224fsumrecl 14465 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
22631, 44fsumabs 14533 . . . . . 6 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
227 expcl 12878 . . . . . . . . . . . . 13 ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
22812, 227sylan 488 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
22936, 228syldan 487 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇𝑘) ∈ ℂ)
23041, 229mulcld 10060 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · (𝑇𝑘)) ∈ ℂ)
231230abscld 14175 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
23231, 231fsumrecl 14465 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
23314, 33reexpcld 13025 . . . . . . . 8 (𝜑 → (𝑋↑(𝐾 + 1)) ∈ ℝ)
234232, 233remulcld 10070 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) ∈ ℝ)
235233adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋↑(𝐾 + 1)) ∈ ℝ)
236231, 235remulcld 10070 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) ∈ ℝ)
23712adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑇 ∈ ℂ)
23815adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ∈ ℂ)
239237, 238, 36mulexpd 13023 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝑇 · 𝑋)↑𝑘) = ((𝑇𝑘) · (𝑋𝑘)))
240239oveq2d 6666 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴𝑘) · ((𝑇𝑘) · (𝑋𝑘))))
24114adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ∈ ℝ)
242241, 36reexpcld 13025 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℝ)
243242recnd 10068 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℂ)
24441, 229, 243mulassd 10063 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘)) = ((𝐴𝑘) · ((𝑇𝑘) · (𝑋𝑘))))
245240, 244eqtr4d 2659 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘)))
246245fveq2d 6195 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = (abs‘(((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘))))
247230, 243absmuld 14193 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘(((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (abs‘(𝑋𝑘))))
248 elfzelz 12342 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ ℤ)
249 rpexpcl 12879 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ+𝑘 ∈ ℤ) → (𝑋𝑘) ∈ ℝ+)
25013, 248, 249syl2an 494 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℝ+)
251250rpge0d 11876 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝑋𝑘))
252242, 251absidd 14161 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘(𝑋𝑘)) = (𝑋𝑘))
253252oveq2d 6666 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (abs‘(𝑋𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)))
254246, 247, 2533eqtrd 2660 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)))
255230absge0d 14183 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴𝑘) · (𝑇𝑘))))
25633adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐾 + 1) ∈ ℕ0)
25734adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
258203adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ 𝑋)
259208adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ≤ 1)
260241, 256, 257, 258, 259leexp2rd 13042 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ≤ (𝑋↑(𝐾 + 1)))
261242, 235, 231, 255, 260lemul2ad 10964 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)) ≤ ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
262254, 261eqbrtrd 4675 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
26331, 224, 236, 262fsumle 14531 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
264233recnd 10068 . . . . . . . . 9 (𝜑 → (𝑋↑(𝐾 + 1)) ∈ ℂ)
265231recnd 10068 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℂ)
26631, 264, 265fsummulc1 14517 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
267263, 266breqtrrd 4681 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
26815, 27expp1d 13009 . . . . . . . . . . 11 (𝜑 → (𝑋↑(𝐾 + 1)) = ((𝑋𝐾) · 𝑋))
269156, 15mulcomd 10061 . . . . . . . . . . 11 (𝜑 → ((𝑋𝐾) · 𝑋) = (𝑋 · (𝑋𝐾)))
270268, 269eqtrd 2656 . . . . . . . . . 10 (𝜑 → (𝑋↑(𝐾 + 1)) = (𝑋 · (𝑋𝐾)))
271270oveq2d 6666 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋 · (𝑋𝐾))))
272232recnd 10068 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℂ)
273272, 15, 156mulassd 10063 . . . . . . . . 9 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋 · (𝑋𝐾))))
274271, 273eqtr4d 2659 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)))
275232, 14remulcld 10070 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) ∈ ℝ)
276 nnssz 11397 . . . . . . . . . . . 12 ℕ ⊆ ℤ
27762, 276sstri 3612 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℤ
278 ne0i 3921 . . . . . . . . . . . . . 14 (𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} → {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅)
27978, 278syl 17 . . . . . . . . . . . . 13 (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅)
280 infssuzcl 11772 . . . . . . . . . . . . 13 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
28164, 279, 280sylancr 695 . . . . . . . . . . . 12 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
2826, 281syl5eqel 2705 . . . . . . . . . . 11 (𝜑𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
283277, 282sseldi 3601 . . . . . . . . . 10 (𝜑𝐾 ∈ ℤ)
28413, 283rpexpcld 13032 . . . . . . . . 9 (𝜑 → (𝑋𝐾) ∈ ℝ+)
285 peano2re 10209 . . . . . . . . . . . 12 𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ)
286232, 285syl 17 . . . . . . . . . . 11 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ)
287286, 14remulcld 10070 . . . . . . . . . 10 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ∈ ℝ)
288232ltp1d 10954 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
289232, 286, 13, 288ltmul1dd 11927 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) < ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋))
290 min2 12021 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(1 ≤ 𝑈, 1, 𝑈) ≤ 𝑈)
291198, 205, 290sylancr 695 . . . . . . . . . . . . 13 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ≤ 𝑈)
2929, 291syl5eqbr 4688 . . . . . . . . . . . 12 (𝜑𝑋𝑈)
293292, 8syl6breq 4694 . . . . . . . . . . 11 (𝜑𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1)))
294 0red 10041 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
29531, 231, 255fsumge0 14527 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))))
296294, 232, 286, 295, 288lelttrd 10195 . . . . . . . . . . . 12 (𝜑 → 0 < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
297 lemuldiv2 10904 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ (abs‘(𝐹‘0)) ∈ ℝ ∧ ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ ∧ 0 < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))) → (((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)) ↔ 𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))))
29814, 24, 286, 296, 297syl112anc 1330 . . . . . . . . . . 11 (𝜑 → (((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)) ↔ 𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))))
299293, 298mpbird 247 . . . . . . . . . 10 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)))
300275, 287, 24, 289, 299ltletrd 10197 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) < (abs‘(𝐹‘0)))
301275, 24, 284, 300ltmul1dd 11927 . . . . . . . 8 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
302274, 301eqbrtrd 4675 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
303225, 234, 29, 267, 302lelttrd 10195 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
30446, 225, 29, 226, 303lelttrd 10195 . . . . 5 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
30546, 29, 24, 304ltsub2dd 10640 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) < ((abs‘(𝐹‘0)) − (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
30630, 46, 24ltaddsubd 10627 . . . 4 (𝜑 → ((((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) < (abs‘(𝐹‘0)) ↔ ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) < ((abs‘(𝐹‘0)) − (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))))
307305, 306mpbird 247 . . 3 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) < (abs‘(𝐹‘0)))
30820, 47, 24, 223, 307lelttrd 10195 . 2 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0)))
309 fveq2 6191 . . . . 5 (𝑥 = (𝑇 · 𝑋) → (𝐹𝑥) = (𝐹‘(𝑇 · 𝑋)))
310309fveq2d 6195 . . . 4 (𝑥 = (𝑇 · 𝑋) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝑇 · 𝑋))))
311310breq1d 4663 . . 3 (𝑥 = (𝑇 · 𝑋) → ((abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)) ↔ (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0))))
312311rspcev 3309 . 2 (((𝑇 · 𝑋) ∈ ℂ ∧ (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0))) → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
31316, 308, 312syl2anc 693 1 (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  cun 3572  cin 3573  wss 3574  c0 3915  ifcif 4086   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  infcinf 8347  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  cuz 11687  +crp 11832  ...cfz 12326  cexp 12860  abscabs 13974  Σcsu 14416  0𝑝c0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943  𝑐ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-coe 23946  df-dgr 23947  df-log 24303  df-cxp 24304
This theorem is referenced by:  ftalem6  24804
  Copyright terms: Public domain W3C validator