![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncvsi | Structured version Visualization version GIF version |
Description: The properties of a normed subcomplex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 7-Oct-2021.) |
Ref | Expression |
---|---|
isncvsngp.v | ⊢ 𝑉 = (Base‘𝑊) |
isncvsngp.n | ⊢ 𝑁 = (norm‘𝑊) |
isncvsngp.s | ⊢ · = ( ·𝑠 ‘𝑊) |
isncvsngp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isncvsngp.k | ⊢ 𝐾 = (Base‘𝐹) |
ncvsi.m | ⊢ − = (-g‘𝑊) |
ncvsi.0 | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
ncvsi | ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isncvsngp.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | isncvsngp.n | . . 3 ⊢ 𝑁 = (norm‘𝑊) | |
3 | isncvsngp.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
4 | isncvsngp.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | isncvsngp.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
6 | 1, 2, 3, 4, 5 | isncvsngp 22949 | . 2 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
7 | simp1 1061 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → 𝑊 ∈ ℂVec) | |
8 | 1, 2 | nmf 22419 | . . . 4 ⊢ (𝑊 ∈ NrmGrp → 𝑁:𝑉⟶ℝ) |
9 | 8 | 3ad2ant2 1083 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → 𝑁:𝑉⟶ℝ) |
10 | ncvsi.m | . . . . . . 7 ⊢ − = (-g‘𝑊) | |
11 | ncvsi.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑊) | |
12 | 1, 2, 10, 11 | ngpi 22432 | . . . . . 6 ⊢ (𝑊 ∈ NrmGrp → (𝑊 ∈ Grp ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
13 | r19.26 3064 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ 𝑉 ((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) ↔ (∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) | |
14 | simpll 790 | . . . . . . . . . . 11 ⊢ (((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 )) | |
15 | simplr 792 | . . . . . . . . . . 11 ⊢ (((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) | |
16 | simpr 477 | . . . . . . . . . . 11 ⊢ (((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) | |
17 | 14, 15, 16 | 3jca 1242 | . . . . . . . . . 10 ⊢ (((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
18 | 17 | ralimi 2952 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ 𝑉 ((((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
19 | 13, 18 | sylbir 225 | . . . . . . . 8 ⊢ ((∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
20 | 19 | ex 450 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → (∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) |
21 | 20 | 3ad2ant3 1084 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) → (∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) |
22 | 12, 21 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ NrmGrp → (∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) |
23 | 22 | imp 445 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
24 | 23 | 3adant1 1079 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) |
25 | 7, 9, 24 | 3jca 1242 | . 2 ⊢ ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) |
26 | 6, 25 | sylbi 207 | 1 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∩ cin 3573 class class class wbr 4653 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 0cc0 9936 + caddc 9939 · cmul 9941 ≤ cle 10075 abscabs 13974 Basecbs 15857 Scalarcsca 15944 ·𝑠 cvsca 15945 0gc0g 16100 Grpcgrp 17422 -gcsg 17424 normcnm 22381 NrmGrpcngp 22382 NrmVeccnvc 22386 ℂVecccvs 22923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ico 12181 df-fz 12327 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-rest 16083 df-topn 16084 df-0g 16102 df-topgen 16104 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cmn 18195 df-mgp 18490 df-ring 18549 df-cring 18550 df-subrg 18778 df-abv 18817 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-cnfld 19747 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-xms 22125 df-ms 22126 df-nm 22387 df-ngp 22388 df-nrg 22390 df-nlm 22391 df-nvc 22392 df-clm 22863 df-cvs 22924 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |