MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negfi Structured version   Visualization version   Unicode version

Theorem negfi 10971
Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
negfi  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  { n  e.  RR  |  -u n  e.  A }  e.  Fin )
Distinct variable group:    A, n

Proof of Theorem negfi
Dummy variables  a  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3597 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( a  e.  A  ->  a  e.  RR ) )
2 renegcl 10344 . . . . . . . . . 10  |-  ( a  e.  RR  ->  -u a  e.  RR )
31, 2syl6 35 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( a  e.  A  ->  -u a  e.  RR ) )
43imp 445 . . . . . . . 8  |-  ( ( A  C_  RR  /\  a  e.  A )  ->  -u a  e.  RR )
54ralrimiva 2966 . . . . . . 7  |-  ( A 
C_  RR  ->  A. a  e.  A  -u a  e.  RR )
6 dmmptg 5632 . . . . . . 7  |-  ( A. a  e.  A  -u a  e.  RR  ->  dom  ( a  e.  A  |->  -u a
)  =  A )
75, 6syl 17 . . . . . 6  |-  ( A 
C_  RR  ->  dom  (
a  e.  A  |->  -u a )  =  A )
87eqcomd 2628 . . . . 5  |-  ( A 
C_  RR  ->  A  =  dom  ( a  e.  A  |->  -u a ) )
98eleq1d 2686 . . . 4  |-  ( A 
C_  RR  ->  ( A  e.  Fin  <->  dom  ( a  e.  A  |->  -u a
)  e.  Fin )
)
10 funmpt 5926 . . . . 5  |-  Fun  (
a  e.  A  |->  -u a )
11 fundmfibi 8245 . . . . 5  |-  ( Fun  ( a  e.  A  |-> 
-u a )  -> 
( ( a  e.  A  |->  -u a )  e. 
Fin 
<->  dom  ( a  e.  A  |->  -u a )  e. 
Fin ) )
1210, 11mp1i 13 . . . 4  |-  ( A 
C_  RR  ->  ( ( a  e.  A  |->  -u a )  e.  Fin  <->  dom  ( a  e.  A  |-> 
-u a )  e. 
Fin ) )
139, 12bitr4d 271 . . 3  |-  ( A 
C_  RR  ->  ( A  e.  Fin  <->  ( a  e.  A  |->  -u a
)  e.  Fin )
)
14 reex 10027 . . . . . 6  |-  RR  e.  _V
1514ssex 4802 . . . . 5  |-  ( A 
C_  RR  ->  A  e. 
_V )
16 mptexg 6484 . . . . 5  |-  ( A  e.  _V  ->  (
a  e.  A  |->  -u a )  e.  _V )
1715, 16syl 17 . . . 4  |-  ( A 
C_  RR  ->  ( a  e.  A  |->  -u a
)  e.  _V )
18 eqid 2622 . . . . . 6  |-  ( a  e.  A  |->  -u a
)  =  ( a  e.  A  |->  -u a
)
1918negf1o 10460 . . . . 5  |-  ( A 
C_  RR  ->  ( a  e.  A  |->  -u a
) : A -1-1-onto-> { x  e.  RR  |  -u x  e.  A } )
20 f1of1 6136 . . . . 5  |-  ( ( a  e.  A  |->  -u a ) : A -1-1-onto-> {
x  e.  RR  |  -u x  e.  A }  ->  ( a  e.  A  |-> 
-u a ) : A -1-1-> { x  e.  RR  |  -u x  e.  A } )
2119, 20syl 17 . . . 4  |-  ( A 
C_  RR  ->  ( a  e.  A  |->  -u a
) : A -1-1-> {
x  e.  RR  |  -u x  e.  A }
)
22 f1vrnfibi 8251 . . . 4  |-  ( ( ( a  e.  A  |-> 
-u a )  e. 
_V  /\  ( a  e.  A  |->  -u a
) : A -1-1-> {
x  e.  RR  |  -u x  e.  A }
)  ->  ( (
a  e.  A  |->  -u a )  e.  Fin  <->  ran  ( a  e.  A  |-> 
-u a )  e. 
Fin ) )
2317, 21, 22syl2anc 693 . . 3  |-  ( A 
C_  RR  ->  ( ( a  e.  A  |->  -u a )  e.  Fin  <->  ran  ( a  e.  A  |-> 
-u a )  e. 
Fin ) )
241imp 445 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  a  e.  A )  ->  a  e.  RR )
252adantl 482 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  a  e.  A )  /\  a  e.  RR )  ->  -u a  e.  RR )
26 recn 10026 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  RR  ->  a  e.  CC )
2726negnegd 10383 . . . . . . . . . . . . . . . 16  |-  ( a  e.  RR  ->  -u -u a  =  a )
2827eqcomd 2628 . . . . . . . . . . . . . . 15  |-  ( a  e.  RR  ->  a  =  -u -u a )
2928eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( a  e.  RR  ->  (
a  e.  A  <->  -u -u a  e.  A ) )
3029biimpcd 239 . . . . . . . . . . . . 13  |-  ( a  e.  A  ->  (
a  e.  RR  ->  -u -u a  e.  A ) )
3130adantl 482 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  a  e.  A )  ->  (
a  e.  RR  ->  -u -u a  e.  A ) )
3231imp 445 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  a  e.  A )  /\  a  e.  RR )  ->  -u -u a  e.  A
)
3325, 32jca 554 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  a  e.  A )  /\  a  e.  RR )  ->  ( -u a  e.  RR  /\  -u -u a  e.  A ) )
3424, 33mpdan 702 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  a  e.  A )  ->  ( -u a  e.  RR  /\  -u -u a  e.  A
) )
35 eleq1 2689 . . . . . . . . . 10  |-  ( n  =  -u a  ->  (
n  e.  RR  <->  -u a  e.  RR ) )
36 negeq 10273 . . . . . . . . . . 11  |-  ( n  =  -u a  ->  -u n  =  -u -u a )
3736eleq1d 2686 . . . . . . . . . 10  |-  ( n  =  -u a  ->  ( -u n  e.  A  <->  -u -u a  e.  A ) )
3835, 37anbi12d 747 . . . . . . . . 9  |-  ( n  =  -u a  ->  (
( n  e.  RR  /\  -u n  e.  A
)  <->  ( -u a  e.  RR  /\  -u -u a  e.  A ) ) )
3934, 38syl5ibrcom 237 . . . . . . . 8  |-  ( ( A  C_  RR  /\  a  e.  A )  ->  (
n  =  -u a  ->  ( n  e.  RR  /\  -u n  e.  A
) ) )
4039rexlimdva 3031 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. a  e.  A  n  =  -u a  ->  (
n  e.  RR  /\  -u n  e.  A ) ) )
41 simprr 796 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  (
n  e.  RR  /\  -u n  e.  A ) )  ->  -u n  e.  A )
42 negeq 10273 . . . . . . . . . . 11  |-  ( a  =  -u n  ->  -u a  =  -u -u n )
4342eqeq2d 2632 . . . . . . . . . 10  |-  ( a  =  -u n  ->  (
n  =  -u a  <->  n  =  -u -u n ) )
4443adantl 482 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  ( n  e.  RR  /\  -u n  e.  A
) )  /\  a  =  -u n )  -> 
( n  =  -u a 
<->  n  =  -u -u n
) )
45 recn 10026 . . . . . . . . . . 11  |-  ( n  e.  RR  ->  n  e.  CC )
46 negneg 10331 . . . . . . . . . . . 12  |-  ( n  e.  CC  ->  -u -u n  =  n )
4746eqcomd 2628 . . . . . . . . . . 11  |-  ( n  e.  CC  ->  n  =  -u -u n )
4845, 47syl 17 . . . . . . . . . 10  |-  ( n  e.  RR  ->  n  =  -u -u n )
4948ad2antrl 764 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  (
n  e.  RR  /\  -u n  e.  A ) )  ->  n  =  -u -u n )
5041, 44, 49rspcedvd 3317 . . . . . . . 8  |-  ( ( A  C_  RR  /\  (
n  e.  RR  /\  -u n  e.  A ) )  ->  E. a  e.  A  n  =  -u a )
5150ex 450 . . . . . . 7  |-  ( A 
C_  RR  ->  ( ( n  e.  RR  /\  -u n  e.  A )  ->  E. a  e.  A  n  =  -u a ) )
5240, 51impbid 202 . . . . . 6  |-  ( A 
C_  RR  ->  ( E. a  e.  A  n  =  -u a  <->  ( n  e.  RR  /\  -u n  e.  A ) ) )
5352abbidv 2741 . . . . 5  |-  ( A 
C_  RR  ->  { n  |  E. a  e.  A  n  =  -u a }  =  { n  |  ( n  e.  RR  /\  -u n  e.  A
) } )
5418rnmpt 5371 . . . . 5  |-  ran  (
a  e.  A  |->  -u a )  =  {
n  |  E. a  e.  A  n  =  -u a }
55 df-rab 2921 . . . . 5  |-  { n  e.  RR  |  -u n  e.  A }  =  {
n  |  ( n  e.  RR  /\  -u n  e.  A ) }
5653, 54, 553eqtr4g 2681 . . . 4  |-  ( A 
C_  RR  ->  ran  (
a  e.  A  |->  -u a )  =  {
n  e.  RR  |  -u n  e.  A }
)
5756eleq1d 2686 . . 3  |-  ( A 
C_  RR  ->  ( ran  ( a  e.  A  |-> 
-u a )  e. 
Fin 
<->  { n  e.  RR  |  -u n  e.  A }  e.  Fin )
)
5813, 23, 573bitrd 294 . 2  |-  ( A 
C_  RR  ->  ( A  e.  Fin  <->  { n  e.  RR  |  -u n  e.  A }  e.  Fin ) )
5958biimpa 501 1  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  { n  e.  RR  |  -u n  e.  A }  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   dom cdm 5114   ran crn 5115   Fun wfun 5882   -1-1->wf1 5885   -1-1-onto->wf1o 5887   Fincfn 7955   CCcc 9934   RRcr 9935   -ucneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269
This theorem is referenced by:  fiminre  10972
  Copyright terms: Public domain W3C validator