MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmparlem Structured version   Visualization version   GIF version

Theorem nmparlem 23038
Description: Lemma for nmpar 23039. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
nmpar.v 𝑉 = (Base‘𝑊)
nmpar.p + = (+g𝑊)
nmpar.m = (-g𝑊)
nmpar.n 𝑁 = (norm‘𝑊)
nmpar.h , = (·𝑖𝑊)
nmpar.f 𝐹 = (Scalar‘𝑊)
nmpar.k 𝐾 = (Base‘𝐹)
nmpar.1 (𝜑𝑊 ∈ ℂPreHil)
nmpar.2 (𝜑𝐴𝑉)
nmpar.3 (𝜑𝐵𝑉)
Assertion
Ref Expression
nmparlem (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem nmparlem
StepHypRef Expression
1 nmpar.h . . . . 5 , = (·𝑖𝑊)
2 nmpar.v . . . . 5 𝑉 = (Base‘𝑊)
3 nmpar.p . . . . 5 + = (+g𝑊)
4 nmpar.1 . . . . 5 (𝜑𝑊 ∈ ℂPreHil)
5 nmpar.2 . . . . 5 (𝜑𝐴𝑉)
6 nmpar.3 . . . . 5 (𝜑𝐵𝑉)
71, 2, 3, 4, 5, 6, 5, 6cph2di 23007 . . . 4 (𝜑 → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
8 nmpar.m . . . . 5 = (-g𝑊)
91, 2, 8, 4, 5, 6, 5, 6cph2subdi 23010 . . . 4 (𝜑 → ((𝐴 𝐵) , (𝐴 𝐵)) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴))))
107, 9oveq12d 6668 . . 3 (𝜑 → (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))) = ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))))
11 cphclm 22989 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
124, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ ℂMod)
13 nmpar.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
14 nmpar.k . . . . . . 7 𝐾 = (Base‘𝐹)
1513, 14clmsscn 22879 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
1612, 15syl 17 . . . . 5 (𝜑𝐾 ⊆ ℂ)
17 cphphl 22971 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
184, 17syl 17 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
1913, 1, 2, 14ipcl 19978 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐴𝑉) → (𝐴 , 𝐴) ∈ 𝐾)
2018, 5, 5, 19syl3anc 1326 . . . . . 6 (𝜑 → (𝐴 , 𝐴) ∈ 𝐾)
2113, 1, 2, 14ipcl 19978 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐵𝑉) → (𝐵 , 𝐵) ∈ 𝐾)
2218, 6, 6, 21syl3anc 1326 . . . . . 6 (𝜑 → (𝐵 , 𝐵) ∈ 𝐾)
2313, 14clmacl 22884 . . . . . 6 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐴) ∈ 𝐾 ∧ (𝐵 , 𝐵) ∈ 𝐾) → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ 𝐾)
2412, 20, 22, 23syl3anc 1326 . . . . 5 (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ 𝐾)
2516, 24sseldd 3604 . . . 4 (𝜑 → ((𝐴 , 𝐴) + (𝐵 , 𝐵)) ∈ ℂ)
2613, 1, 2, 14ipcl 19978 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ 𝐾)
2718, 5, 6, 26syl3anc 1326 . . . . . 6 (𝜑 → (𝐴 , 𝐵) ∈ 𝐾)
2813, 1, 2, 14ipcl 19978 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → (𝐵 , 𝐴) ∈ 𝐾)
2918, 6, 5, 28syl3anc 1326 . . . . . 6 (𝜑 → (𝐵 , 𝐴) ∈ 𝐾)
3013, 14clmacl 22884 . . . . . 6 ((𝑊 ∈ ℂMod ∧ (𝐴 , 𝐵) ∈ 𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ 𝐾)
3112, 27, 29, 30syl3anc 1326 . . . . 5 (𝜑 → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ 𝐾)
3216, 31sseldd 3604 . . . 4 (𝜑 → ((𝐴 , 𝐵) + (𝐵 , 𝐴)) ∈ ℂ)
3325, 32, 25ppncand 10432 . . 3 (𝜑 → ((((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐵) + (𝐵 , 𝐴))) + (((𝐴 , 𝐴) + (𝐵 , 𝐵)) − ((𝐴 , 𝐵) + (𝐵 , 𝐴)))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
3410, 33eqtrd 2656 . 2 (𝜑 → (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
35 cphlmod 22974 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
364, 35syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
372, 3lmodvacl 18877 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + 𝐵) ∈ 𝑉)
3836, 5, 6, 37syl3anc 1326 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ 𝑉)
39 nmpar.n . . . . 5 𝑁 = (norm‘𝑊)
402, 1, 39nmsq 22994 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
414, 38, 40syl2anc 693 . . 3 (𝜑 → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
422, 8lmodvsubcl 18908 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) ∈ 𝑉)
4336, 5, 6, 42syl3anc 1326 . . . 4 (𝜑 → (𝐴 𝐵) ∈ 𝑉)
442, 1, 39nmsq 22994 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴 𝐵) ∈ 𝑉) → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
454, 43, 44syl2anc 693 . . 3 (𝜑 → ((𝑁‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) , (𝐴 𝐵)))
4641, 45oveq12d 6668 . 2 (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (((𝐴 + 𝐵) , (𝐴 + 𝐵)) + ((𝐴 𝐵) , (𝐴 𝐵))))
472, 1, 39nmsq 22994 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉) → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
484, 5, 47syl2anc 693 . . . . 5 (𝜑 → ((𝑁𝐴)↑2) = (𝐴 , 𝐴))
492, 1, 39nmsq 22994 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉) → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
504, 6, 49syl2anc 693 . . . . 5 (𝜑 → ((𝑁𝐵)↑2) = (𝐵 , 𝐵))
5148, 50oveq12d 6668 . . . 4 (𝜑 → (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)) = ((𝐴 , 𝐴) + (𝐵 , 𝐵)))
5251oveq2d 6666 . . 3 (𝜑 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))) = (2 · ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
53252timesd 11275 . . 3 (𝜑 → (2 · ((𝐴 , 𝐴) + (𝐵 , 𝐵))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
5452, 53eqtrd 2656 . 2 (𝜑 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))) = (((𝐴 , 𝐴) + (𝐵 , 𝐵)) + ((𝐴 , 𝐴) + (𝐵 , 𝐵))))
5534, 46, 543eqtr4d 2666 1 (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 𝐵))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wss 3574  cfv 5888  (class class class)co 6650  cc 9934   + caddc 9939   · cmul 9941  cmin 10266  2c2 11070  cexp 12860  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944  ·𝑖cip 15946  -gcsg 17424  LModclmod 18863  PreHilcphl 19969  normcnm 22381  ℂModcclm 22862  ℂPreHilccph 22966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-phl 19971  df-nlm 22391  df-clm 22863  df-cph 22968
This theorem is referenced by:  nmpar  23039
  Copyright terms: Public domain W3C validator