| Step | Hyp | Ref
| Expression |
| 1 | | breq2 4657 |
. . . 4
⊢ (𝐴 = 𝐵 → ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵)) |
| 2 | 1 | a1d 25 |
. . 3
⊢ (𝐴 = 𝐵 → ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 3 | 2 | ralrimivv 2970 |
. 2
⊢ (𝐴 = 𝐵 → ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵)) |
| 4 | | elnn0 11294 |
. . 3
⊢ (𝐴 ∈ ℕ0
↔ (𝐴 ∈ ℕ
∨ 𝐴 =
0)) |
| 5 | | elnn0 11294 |
. . . . . . 7
⊢ (𝐵 ∈ ℕ0
↔ (𝐵 ∈ ℕ
∨ 𝐵 =
0)) |
| 6 | | nnre 11027 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
| 7 | | nnre 11027 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
| 8 | | lttri2 10120 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 9 | 6, 7, 8 | syl2an 494 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 10 | 9 | ancoms 469 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 11 | | nn0prpwlem 32317 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ℕ →
∀𝑘 ∈ ℕ
(𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 12 | | breq1 4656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝐴 → (𝑘 < 𝐵 ↔ 𝐴 < 𝐵)) |
| 13 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝐴 → ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐴)) |
| 14 | 13 | bibi1d 333 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝐴 → (((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐵) ↔ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 15 | 14 | notbid 308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐴 → (¬ ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐵) ↔ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 16 | 15 | 2rexbidv 3057 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝐴 → (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐵) ↔ ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 17 | 12, 16 | imbi12d 334 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝐴 → ((𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐵)) ↔ (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵)))) |
| 18 | 17 | rspcv 3305 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ →
(∀𝑘 ∈ ℕ
(𝑘 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐵)) → (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵)))) |
| 19 | 11, 18 | mpan9 486 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 20 | | nn0prpwlem 32317 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ →
∀𝑘 ∈ ℕ
(𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐴))) |
| 21 | | breq1 4656 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐵 → (𝑘 < 𝐴 ↔ 𝐵 < 𝐴)) |
| 22 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝐵 → ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐵)) |
| 23 | 22 | bibi1d 333 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝐵 → (((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐴) ↔ ((𝑝↑𝑛) ∥ 𝐵 ↔ (𝑝↑𝑛) ∥ 𝐴))) |
| 24 | | bicom 212 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑝↑𝑛) ∥ 𝐵 ↔ (𝑝↑𝑛) ∥ 𝐴) ↔ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵)) |
| 25 | 23, 24 | syl6bb 276 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝐵 → (((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐴) ↔ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 26 | 25 | notbid 308 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝐵 → (¬ ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐴) ↔ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 27 | 26 | 2rexbidv 3057 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐵 → (∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐴) ↔ ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 28 | 21, 27 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝐵 → ((𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐴)) ↔ (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵)))) |
| 29 | 28 | rspcv 3305 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℕ →
(∀𝑘 ∈ ℕ
(𝑘 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝑘 ↔ (𝑝↑𝑛) ∥ 𝐴)) → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵)))) |
| 30 | 20, 29 | syl5com 31 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵)))) |
| 31 | 30 | impcom 446 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐵 < 𝐴 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 32 | 19, 31 | jaod 395 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 33 | 10, 32 | sylbid 230 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 ≠ 𝐵 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 34 | | df-ne 2795 |
. . . . . . . . . . 11
⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) |
| 35 | | rexnal2 3043 |
. . . . . . . . . . 11
⊢
(∃𝑝 ∈
ℙ ∃𝑛 ∈
ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵)) |
| 36 | 33, 34, 35 | 3imtr3g 284 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (¬
𝐴 = 𝐵 → ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 37 | 36 | con4d 114 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) →
(∀𝑝 ∈ ℙ
∀𝑛 ∈ ℕ
((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐴 = 𝐵)) |
| 38 | 37 | ex 450 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ → (𝐴 ∈ ℕ →
(∀𝑝 ∈ ℙ
∀𝑛 ∈ ℕ
((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐴 = 𝐵))) |
| 39 | | prmunb 15618 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ →
∃𝑝 ∈ ℙ
𝐴 < 𝑝) |
| 40 | | 1nn 11031 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℕ |
| 41 | | prmz 15389 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
| 42 | | 1nn0 11308 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
ℕ0 |
| 43 | | zexpcl 12875 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑝 ∈ ℤ ∧ 1 ∈
ℕ0) → (𝑝↑1) ∈ ℤ) |
| 44 | 41, 42, 43 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈ ℙ → (𝑝↑1) ∈
ℤ) |
| 45 | | dvdsle 15032 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑝↑1) ∈ ℤ ∧
𝐴 ∈ ℕ) →
((𝑝↑1) ∥ 𝐴 → (𝑝↑1) ≤ 𝐴)) |
| 46 | 44, 45 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → (𝑝↑1) ≤ 𝐴)) |
| 47 | | prmnn 15388 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) |
| 48 | | nnre 11027 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝 ∈ ℕ → 𝑝 ∈
ℝ) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℝ) |
| 50 | | reexpcl 12877 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝 ∈ ℝ ∧ 1 ∈
ℕ0) → (𝑝↑1) ∈ ℝ) |
| 51 | 49, 42, 50 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 ∈ ℙ → (𝑝↑1) ∈
ℝ) |
| 52 | | lenlt 10116 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑝↑1) ∈ ℝ ∧
𝐴 ∈ ℝ) →
((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < (𝑝↑1))) |
| 53 | 51, 6, 52 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < (𝑝↑1))) |
| 54 | 47 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℂ) |
| 55 | 54 | exp1d 13003 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝 ∈ ℙ → (𝑝↑1) = 𝑝) |
| 56 | 55 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝↑1) = 𝑝) |
| 57 | 56 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 < (𝑝↑1) ↔ 𝐴 < 𝑝)) |
| 58 | 57 | notbid 308 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (¬
𝐴 < (𝑝↑1) ↔ ¬ 𝐴 < 𝑝)) |
| 59 | 53, 58 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ≤ 𝐴 ↔ ¬ 𝐴 < 𝑝)) |
| 60 | 46, 59 | sylibd 229 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝↑1) ∥ 𝐴 → ¬ 𝐴 < 𝑝)) |
| 61 | 60 | ancoms 469 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝↑1) ∥ 𝐴 → ¬ 𝐴 < 𝑝)) |
| 62 | 61 | con2d 129 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐴 < 𝑝 → ¬ (𝑝↑1) ∥ 𝐴)) |
| 63 | 62 | 3impia 1261 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ (𝑝↑1) ∥ 𝐴) |
| 64 | | dvds0 14997 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝↑1) ∈ ℤ →
(𝑝↑1) ∥
0) |
| 65 | 44, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 ∈ ℙ → (𝑝↑1) ∥
0) |
| 66 | 65 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → (𝑝↑1) ∥ 0) |
| 67 | | idd 24 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → (((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴))) |
| 68 | 66, 67 | mpid 44 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → (((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴) → (𝑝↑1) ∥ 𝐴)) |
| 69 | 63, 68 | mtod 189 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴)) |
| 70 | | biimpr 210 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐴)) |
| 71 | 69, 70 | nsyl 135 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)) |
| 72 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → (𝑝↑𝑛) = (𝑝↑1)) |
| 73 | 72 | breq1d 4663 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑1) ∥ 𝐴)) |
| 74 | 72 | breq1d 4663 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑1) ∥ 0)) |
| 75 | 73, 74 | bibi12d 335 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → (((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0) ↔ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0))) |
| 76 | 75 | notbid 308 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → (¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0) ↔ ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0))) |
| 77 | 76 | rspcev 3309 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℕ ∧ ¬ ((𝑝↑1) ∥ 𝐴 ↔ (𝑝↑1) ∥ 0)) → ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0)) |
| 78 | 40, 71, 77 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝) → ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0)) |
| 79 | 78 | 3expia 1267 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐴 < 𝑝 → ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0))) |
| 80 | 79 | reximdva 3017 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ →
(∃𝑝 ∈ ℙ
𝐴 < 𝑝 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0))) |
| 81 | 39, 80 | mpd 15 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ →
∃𝑝 ∈ ℙ
∃𝑛 ∈ ℕ
¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0)) |
| 82 | | rexnal2 3043 |
. . . . . . . . . . 11
⊢
(∃𝑝 ∈
ℙ ∃𝑛 ∈
ℕ ¬ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0)) |
| 83 | 81, 82 | sylib 208 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → ¬
∀𝑝 ∈ ℙ
∀𝑛 ∈ ℕ
((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0)) |
| 84 | 83 | pm2.21d 118 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
(∀𝑝 ∈ ℙ
∀𝑛 ∈ ℕ
((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0) → 𝐴 = 0)) |
| 85 | | breq2 4657 |
. . . . . . . . . . . 12
⊢ (𝐵 = 0 → ((𝑝↑𝑛) ∥ 𝐵 ↔ (𝑝↑𝑛) ∥ 0)) |
| 86 | 85 | bibi2d 332 |
. . . . . . . . . . 11
⊢ (𝐵 = 0 → (((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) ↔ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0))) |
| 87 | 86 | 2ralbidv 2989 |
. . . . . . . . . 10
⊢ (𝐵 = 0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0))) |
| 88 | | eqeq2 2633 |
. . . . . . . . . 10
⊢ (𝐵 = 0 → (𝐴 = 𝐵 ↔ 𝐴 = 0)) |
| 89 | 87, 88 | imbi12d 334 |
. . . . . . . . 9
⊢ (𝐵 = 0 → ((∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐴 = 𝐵) ↔ (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0) → 𝐴 = 0))) |
| 90 | 84, 89 | syl5ibr 236 |
. . . . . . . 8
⊢ (𝐵 = 0 → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐴 = 𝐵))) |
| 91 | 38, 90 | jaoi 394 |
. . . . . . 7
⊢ ((𝐵 ∈ ℕ ∨ 𝐵 = 0) → (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐴 = 𝐵))) |
| 92 | 5, 91 | sylbi 207 |
. . . . . 6
⊢ (𝐵 ∈ ℕ0
→ (𝐴 ∈ ℕ
→ (∀𝑝 ∈
ℙ ∀𝑛 ∈
ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐴 = 𝐵))) |
| 93 | 92 | com12 32 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (𝐵 ∈ ℕ0
→ (∀𝑝 ∈
ℙ ∀𝑛 ∈
ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐴 = 𝐵))) |
| 94 | | orcom 402 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℕ ∨ 𝐵 = 0) ↔ (𝐵 = 0 ∨ 𝐵 ∈ ℕ)) |
| 95 | | df-or 385 |
. . . . . . . . . 10
⊢ ((𝐵 = 0 ∨ 𝐵 ∈ ℕ) ↔ (¬ 𝐵 = 0 → 𝐵 ∈ ℕ)) |
| 96 | 5, 94, 95 | 3bitri 286 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ0
↔ (¬ 𝐵 = 0 →
𝐵 ∈
ℕ)) |
| 97 | | prmunb 15618 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ →
∃𝑝 ∈ ℙ
𝐵 < 𝑝) |
| 98 | | dvdsle 15032 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑝↑1) ∈ ℤ ∧
𝐵 ∈ ℕ) →
((𝑝↑1) ∥ 𝐵 → (𝑝↑1) ≤ 𝐵)) |
| 99 | 44, 98 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → (𝑝↑1) ≤ 𝐵)) |
| 100 | | lenlt 10116 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑝↑1) ∈ ℝ ∧
𝐵 ∈ ℝ) →
((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑝↑1))) |
| 101 | 51, 7, 100 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑝↑1))) |
| 102 | 55 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑝↑1) = 𝑝) |
| 103 | 102 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝐵 < (𝑝↑1) ↔ 𝐵 < 𝑝)) |
| 104 | 103 | notbid 308 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (¬
𝐵 < (𝑝↑1) ↔ ¬ 𝐵 < 𝑝)) |
| 105 | 101, 104 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ≤ 𝐵 ↔ ¬ 𝐵 < 𝑝)) |
| 106 | 99, 105 | sylibd 229 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝↑1) ∥ 𝐵 → ¬ 𝐵 < 𝑝)) |
| 107 | 106 | ancoms 469 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝↑1) ∥ 𝐵 → ¬ 𝐵 < 𝑝)) |
| 108 | 107 | con2d 129 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐵 < 𝑝 → ¬ (𝑝↑1) ∥ 𝐵)) |
| 109 | 108 | 3impia 1261 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ (𝑝↑1) ∥ 𝐵) |
| 110 | 65 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → (𝑝↑1) ∥ 0) |
| 111 | | idd 24 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → (((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵))) |
| 112 | 110, 111 | mpid 44 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → (((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵) → (𝑝↑1) ∥ 𝐵)) |
| 113 | 109, 112 | mtod 189 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵)) |
| 114 | | biimp 205 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵) → ((𝑝↑1) ∥ 0 → (𝑝↑1) ∥ 𝐵)) |
| 115 | 113, 114 | nsyl 135 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)) |
| 116 | 72 | breq1d 4663 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → ((𝑝↑𝑛) ∥ 𝐵 ↔ (𝑝↑1) ∥ 𝐵)) |
| 117 | 74, 116 | bibi12d 335 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → (((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵) ↔ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵))) |
| 118 | 117 | notbid 308 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → (¬ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵) ↔ ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵))) |
| 119 | 118 | rspcev 3309 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℕ ∧ ¬ ((𝑝↑1) ∥ 0 ↔ (𝑝↑1) ∥ 𝐵)) → ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵)) |
| 120 | 40, 115, 119 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝) → ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵)) |
| 121 | 120 | 3expia 1267 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝐵 < 𝑝 → ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 122 | 121 | reximdva 3017 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ →
(∃𝑝 ∈ ℙ
𝐵 < 𝑝 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ ¬ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 123 | 97, 122 | mpd 15 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ →
∃𝑝 ∈ ℙ
∃𝑛 ∈ ℕ
¬ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵)) |
| 124 | | rexnal2 3043 |
. . . . . . . . . . 11
⊢
(∃𝑝 ∈
ℙ ∃𝑛 ∈
ℕ ¬ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵) ↔ ¬ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵)) |
| 125 | 123, 124 | sylib 208 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℕ → ¬
∀𝑝 ∈ ℙ
∀𝑛 ∈ ℕ
((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵)) |
| 126 | 125 | imim2i 16 |
. . . . . . . . 9
⊢ ((¬
𝐵 = 0 → 𝐵 ∈ ℕ) → (¬
𝐵 = 0 → ¬
∀𝑝 ∈ ℙ
∀𝑛 ∈ ℕ
((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 127 | 96, 126 | sylbi 207 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ0
→ (¬ 𝐵 = 0 →
¬ ∀𝑝 ∈
ℙ ∀𝑛 ∈
ℕ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 128 | 127 | con4d 114 |
. . . . . . 7
⊢ (𝐵 ∈ ℕ0
→ (∀𝑝 ∈
ℙ ∀𝑛 ∈
ℕ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐵 = 0)) |
| 129 | | eqcom 2629 |
. . . . . . 7
⊢ (𝐵 = 0 ↔ 0 = 𝐵) |
| 130 | 128, 129 | syl6ib 241 |
. . . . . 6
⊢ (𝐵 ∈ ℕ0
→ (∀𝑝 ∈
ℙ ∀𝑛 ∈
ℕ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵) → 0 = 𝐵)) |
| 131 | | breq2 4657 |
. . . . . . . . 9
⊢ (𝐴 = 0 → ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 0)) |
| 132 | 131 | bibi1d 333 |
. . . . . . . 8
⊢ (𝐴 = 0 → (((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) ↔ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 133 | 132 | 2ralbidv 2989 |
. . . . . . 7
⊢ (𝐴 = 0 → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵))) |
| 134 | | eqeq1 2626 |
. . . . . . 7
⊢ (𝐴 = 0 → (𝐴 = 𝐵 ↔ 0 = 𝐵)) |
| 135 | 133, 134 | imbi12d 334 |
. . . . . 6
⊢ (𝐴 = 0 → ((∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐴 = 𝐵) ↔ (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 0 ↔ (𝑝↑𝑛) ∥ 𝐵) → 0 = 𝐵))) |
| 136 | 130, 135 | syl5ibr 236 |
. . . . 5
⊢ (𝐴 = 0 → (𝐵 ∈ ℕ0 →
(∀𝑝 ∈ ℙ
∀𝑛 ∈ ℕ
((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐴 = 𝐵))) |
| 137 | 93, 136 | jaoi 394 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐵 ∈ ℕ0 →
(∀𝑝 ∈ ℙ
∀𝑛 ∈ ℕ
((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐴 = 𝐵))) |
| 138 | 137 | imp 445 |
. . 3
⊢ (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ 𝐵 ∈ ℕ0) →
(∀𝑝 ∈ ℙ
∀𝑛 ∈ ℕ
((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐴 = 𝐵)) |
| 139 | 4, 138 | sylanb 489 |
. 2
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵) → 𝐴 = 𝐵)) |
| 140 | 3, 139 | impbid2 216 |
1
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ((𝑝↑𝑛) ∥ 𝐴 ↔ (𝑝↑𝑛) ∥ 𝐵))) |