Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddfl Structured version   Visualization version   GIF version

Theorem oddfl 39489
Description: Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
oddfl ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1))

Proof of Theorem oddfl
StepHypRef Expression
1 zre 11381 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
2 1red 10055 . . . . . . . . 9 (𝐾 ∈ ℤ → 1 ∈ ℝ)
31, 2resubcld 10458 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℝ)
4 2rp 11837 . . . . . . . . 9 2 ∈ ℝ+
54a1i 11 . . . . . . . 8 (𝐾 ∈ ℤ → 2 ∈ ℝ+)
61lem1d 10957 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 − 1) ≤ 𝐾)
73, 1, 5, 6lediv1dd 11930 . . . . . . 7 (𝐾 ∈ ℤ → ((𝐾 − 1) / 2) ≤ (𝐾 / 2))
81rehalfcld 11279 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 / 2) ∈ ℝ)
95rpreccld 11882 . . . . . . . . 9 (𝐾 ∈ ℤ → (1 / 2) ∈ ℝ+)
108, 9ltaddrpd 11905 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 / 2) < ((𝐾 / 2) + (1 / 2)))
11 zcn 11382 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
122recnd 10068 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 1 ∈ ℂ)
13 2cnd 11093 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 2 ∈ ℂ)
145rpne0d 11877 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 2 ≠ 0)
1511, 12, 13, 14divsubdird 10840 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 − 1) / 2) = ((𝐾 / 2) − (1 / 2)))
1615oveq1d 6665 . . . . . . . . 9 (𝐾 ∈ ℤ → (((𝐾 − 1) / 2) + 1) = (((𝐾 / 2) − (1 / 2)) + 1))
1711halfcld 11277 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 / 2) ∈ ℂ)
1813, 14reccld 10794 . . . . . . . . . 10 (𝐾 ∈ ℤ → (1 / 2) ∈ ℂ)
1917, 18, 12subadd23d 10414 . . . . . . . . 9 (𝐾 ∈ ℤ → (((𝐾 / 2) − (1 / 2)) + 1) = ((𝐾 / 2) + (1 − (1 / 2))))
20 1mhlfehlf 11251 . . . . . . . . . . 11 (1 − (1 / 2)) = (1 / 2)
2120oveq2i 6661 . . . . . . . . . 10 ((𝐾 / 2) + (1 − (1 / 2))) = ((𝐾 / 2) + (1 / 2))
2221a1i 11 . . . . . . . . 9 (𝐾 ∈ ℤ → ((𝐾 / 2) + (1 − (1 / 2))) = ((𝐾 / 2) + (1 / 2)))
2316, 19, 223eqtrrd 2661 . . . . . . . 8 (𝐾 ∈ ℤ → ((𝐾 / 2) + (1 / 2)) = (((𝐾 − 1) / 2) + 1))
2410, 23breqtrd 4679 . . . . . . 7 (𝐾 ∈ ℤ → (𝐾 / 2) < (((𝐾 − 1) / 2) + 1))
257, 24jca 554 . . . . . 6 (𝐾 ∈ ℤ → (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1)))
2625adantr 481 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1)))
271adantr 481 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 ∈ ℝ)
2827rehalfcld 11279 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (𝐾 / 2) ∈ ℝ)
2911, 12npcand 10396 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 − 1) + 1) = 𝐾)
3029oveq1d 6665 . . . . . . . . 9 (𝐾 ∈ ℤ → (((𝐾 − 1) + 1) / 2) = (𝐾 / 2))
3130adantr 481 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (((𝐾 − 1) + 1) / 2) = (𝐾 / 2))
32 simpr 477 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (𝐾 mod 2) ≠ 0)
3332neneqd 2799 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ¬ (𝐾 mod 2) = 0)
34 mod0 12675 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝐾 mod 2) = 0 ↔ (𝐾 / 2) ∈ ℤ))
351, 5, 34syl2anc 693 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 mod 2) = 0 ↔ (𝐾 / 2) ∈ ℤ))
3635adantr 481 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((𝐾 mod 2) = 0 ↔ (𝐾 / 2) ∈ ℤ))
3733, 36mtbid 314 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ¬ (𝐾 / 2) ∈ ℤ)
3831, 37eqneltrd 2720 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ¬ (((𝐾 − 1) + 1) / 2) ∈ ℤ)
39 simpl 473 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 ∈ ℤ)
40 1zzd 11408 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 1 ∈ ℤ)
4139, 40zsubcld 11487 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (𝐾 − 1) ∈ ℤ)
42 zeo2 11464 . . . . . . . 8 ((𝐾 − 1) ∈ ℤ → (((𝐾 − 1) / 2) ∈ ℤ ↔ ¬ (((𝐾 − 1) + 1) / 2) ∈ ℤ))
4341, 42syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (((𝐾 − 1) / 2) ∈ ℤ ↔ ¬ (((𝐾 − 1) + 1) / 2) ∈ ℤ))
4438, 43mpbird 247 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((𝐾 − 1) / 2) ∈ ℤ)
45 flbi 12617 . . . . . 6 (((𝐾 / 2) ∈ ℝ ∧ ((𝐾 − 1) / 2) ∈ ℤ) → ((⌊‘(𝐾 / 2)) = ((𝐾 − 1) / 2) ↔ (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1))))
4628, 44, 45syl2anc 693 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((⌊‘(𝐾 / 2)) = ((𝐾 − 1) / 2) ↔ (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1))))
4726, 46mpbird 247 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (⌊‘(𝐾 / 2)) = ((𝐾 − 1) / 2))
4847oveq2d 6666 . . 3 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (2 · (⌊‘(𝐾 / 2))) = (2 · ((𝐾 − 1) / 2)))
4948oveq1d 6665 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((2 · (⌊‘(𝐾 / 2))) + 1) = ((2 · ((𝐾 − 1) / 2)) + 1))
5011, 12subcld 10392 . . . . 5 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℂ)
5150, 13, 14divcan2d 10803 . . . 4 (𝐾 ∈ ℤ → (2 · ((𝐾 − 1) / 2)) = (𝐾 − 1))
5251oveq1d 6665 . . 3 (𝐾 ∈ ℤ → ((2 · ((𝐾 − 1) / 2)) + 1) = ((𝐾 − 1) + 1))
5352adantr 481 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((2 · ((𝐾 − 1) / 2)) + 1) = ((𝐾 − 1) + 1))
5429adantr 481 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((𝐾 − 1) + 1) = 𝐾)
5549, 53, 543eqtrrd 2661 1 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  cz 11377  +crp 11832  cfl 12591   mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669
This theorem is referenced by:  dirkertrigeqlem3  40317  dirkertrigeq  40318
  Copyright terms: Public domain W3C validator