| Step | Hyp | Ref
| Expression |
| 1 | | ordtrest2NEW.2 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Toset) |
| 2 | | tospos 29658 |
. . . 4
⊢ (𝐾 ∈ Toset → 𝐾 ∈ Poset) |
| 3 | | posprs 16949 |
. . . 4
⊢ (𝐾 ∈ Poset → 𝐾 ∈ Preset
) |
| 4 | 1, 2, 3 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝐾 ∈ Preset ) |
| 5 | | ordtrest2NEW.3 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 6 | | ordtNEW.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
| 7 | | ordtNEW.l |
. . . 4
⊢ ≤ =
((le‘𝐾) ∩ (𝐵 × 𝐵)) |
| 8 | 6, 7 | ordtrestNEW 29967 |
. . 3
⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ≤ )
↾t 𝐴)) |
| 9 | 4, 5, 8 | syl2anc 693 |
. 2
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) ⊆ ((ordTop‘
≤ )
↾t 𝐴)) |
| 10 | | eqid 2622 |
. . . . . . . 8
⊢ ran
(𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) = ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) |
| 11 | | eqid 2622 |
. . . . . . . 8
⊢ ran
(𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}) = ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}) |
| 12 | 6, 7, 10, 11 | ordtprsval 29964 |
. . . . . . 7
⊢ (𝐾 ∈ Preset →
(ordTop‘ ≤ ) =
(topGen‘(fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))))) |
| 13 | 4, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ordTop‘ ≤ ) =
(topGen‘(fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))))) |
| 14 | 13 | oveq1d 6665 |
. . . . 5
⊢ (𝜑 → ((ordTop‘ ≤ )
↾t 𝐴) =
((topGen‘(fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))))) ↾t 𝐴)) |
| 15 | | fibas 20781 |
. . . . . 6
⊢
(fi‘({𝐵} ∪
(ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ∈ TopBases |
| 16 | | fvex 6201 |
. . . . . . . . 9
⊢
(Base‘𝐾)
∈ V |
| 17 | 6, 16 | eqeltri 2697 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
| 18 | 17 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ V) |
| 19 | 18, 5 | ssexd 4805 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ V) |
| 20 | | tgrest 20963 |
. . . . . 6
⊢
(((fi‘({𝐵}
∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ∈ TopBases ∧ 𝐴 ∈ V) →
(topGen‘((fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))))) ↾t 𝐴)) |
| 21 | 15, 19, 20 | sylancr 695 |
. . . . 5
⊢ (𝜑 →
(topGen‘((fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))))) ↾t 𝐴)) |
| 22 | 14, 21 | eqtr4d 2659 |
. . . 4
⊢ (𝜑 → ((ordTop‘ ≤ )
↾t 𝐴) =
(topGen‘((fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ↾t 𝐴))) |
| 23 | | firest 16093 |
. . . . 5
⊢
(fi‘(({𝐵}
∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴)) = ((fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ↾t 𝐴) |
| 24 | 23 | fveq2i 6194 |
. . . 4
⊢
(topGen‘(fi‘(({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴))) = (topGen‘((fi‘({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) ↾t 𝐴)) |
| 25 | 22, 24 | syl6eqr 2674 |
. . 3
⊢ (𝜑 → ((ordTop‘ ≤ )
↾t 𝐴) =
(topGen‘(fi‘(({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴)))) |
| 26 | | fvex 6201 |
. . . . . . . 8
⊢
(le‘𝐾) ∈
V |
| 27 | 26 | inex1 4799 |
. . . . . . 7
⊢
((le‘𝐾) ∩
(𝐵 × 𝐵)) ∈ V |
| 28 | 7, 27 | eqeltri 2697 |
. . . . . 6
⊢ ≤ ∈
V |
| 29 | 28 | inex1 4799 |
. . . . 5
⊢ ( ≤ ∩
(𝐴 × 𝐴)) ∈ V |
| 30 | | ordttop 21004 |
. . . . 5
⊢ (( ≤ ∩
(𝐴 × 𝐴)) ∈ V →
(ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ Top) |
| 31 | 29, 30 | mp1i 13 |
. . . 4
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) ∈ Top) |
| 32 | 6, 7, 10, 11 | ordtprsuni 29965 |
. . . . . . . . 9
⊢ (𝐾 ∈ Preset → 𝐵 = ∪
({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) |
| 33 | 4, 32 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = ∪ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))) |
| 34 | 33, 18 | eqeltrrd 2702 |
. . . . . . 7
⊢ (𝜑 → ∪ ({𝐵}
∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ∈ V) |
| 35 | | uniexb 6973 |
. . . . . . 7
⊢ (({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ∈ V ↔ ∪ ({𝐵}
∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ∈ V) |
| 36 | 34, 35 | sylibr 224 |
. . . . . 6
⊢ (𝜑 → ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ∈ V) |
| 37 | | restval 16087 |
. . . . . 6
⊢ ((({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ∈ V ∧ 𝐴 ∈ V) → (({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴))) |
| 38 | 36, 19, 37 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴))) |
| 39 | | sseqin2 3817 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) |
| 40 | 5, 39 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 ∩ 𝐴) = 𝐴) |
| 41 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ dom (
≤
∩ (𝐴 × 𝐴)) = dom ( ≤ ∩ (𝐴 × 𝐴)) |
| 42 | 41 | ordttopon 20997 |
. . . . . . . . . . . . . 14
⊢ (( ≤ ∩
(𝐴 × 𝐴)) ∈ V →
(ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom ( ≤ ∩
(𝐴 × 𝐴)))) |
| 43 | 29, 42 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) ∈ (TopOn‘dom (
≤
∩ (𝐴 × 𝐴)))) |
| 44 | 6, 7 | prsssdm 29963 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
| 45 | 4, 5, 44 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
| 46 | 45 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (TopOn‘dom ( ≤ ∩
(𝐴 × 𝐴))) = (TopOn‘𝐴)) |
| 47 | 43, 46 | eleqtrd 2703 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) ∈ (TopOn‘𝐴)) |
| 48 | | toponmax 20730 |
. . . . . . . . . . . 12
⊢
((ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
| 50 | 40, 49 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
| 51 | | elsni 4194 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ {𝐵} → 𝑣 = 𝐵) |
| 52 | 51 | ineq1d 3813 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ {𝐵} → (𝑣 ∩ 𝐴) = (𝐵 ∩ 𝐴)) |
| 53 | 52 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑣 ∈ {𝐵} → ((𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ (𝐵 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
| 54 | 50, 53 | syl5ibrcom 237 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ {𝐵} → (𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
| 55 | 54 | ralrimiv 2965 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑣 ∈ {𝐵} (𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
| 56 | | ordtrest2NEW.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) |
| 57 | 6, 7, 1, 5, 56 | ordtrest2NEWlem 29968 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
| 58 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(ODual‘𝐾) =
(ODual‘𝐾) |
| 59 | 58, 6 | odubas 17133 |
. . . . . . . . . . 11
⊢ 𝐵 =
(Base‘(ODual‘𝐾)) |
| 60 | 7 | cnveqi 5297 |
. . . . . . . . . . . 12
⊢ ◡ ≤ = ◡((le‘𝐾) ∩ (𝐵 × 𝐵)) |
| 61 | | cnvin 5540 |
. . . . . . . . . . . . 13
⊢ ◡((le‘𝐾) ∩ (𝐵 × 𝐵)) = (◡(le‘𝐾) ∩ ◡(𝐵 × 𝐵)) |
| 62 | | cnvxp 5551 |
. . . . . . . . . . . . . 14
⊢ ◡(𝐵 × 𝐵) = (𝐵 × 𝐵) |
| 63 | 62 | ineq2i 3811 |
. . . . . . . . . . . . 13
⊢ (◡(le‘𝐾) ∩ ◡(𝐵 × 𝐵)) = (◡(le‘𝐾) ∩ (𝐵 × 𝐵)) |
| 64 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(le‘𝐾) =
(le‘𝐾) |
| 65 | 58, 64 | oduleval 17131 |
. . . . . . . . . . . . . 14
⊢ ◡(le‘𝐾) = (le‘(ODual‘𝐾)) |
| 66 | 65 | ineq1i 3810 |
. . . . . . . . . . . . 13
⊢ (◡(le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵)) |
| 67 | 61, 63, 66 | 3eqtri 2648 |
. . . . . . . . . . . 12
⊢ ◡((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵)) |
| 68 | 60, 67 | eqtri 2644 |
. . . . . . . . . . 11
⊢ ◡ ≤ =
((le‘(ODual‘𝐾))
∩ (𝐵 × 𝐵)) |
| 69 | 58 | odutos 29663 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Toset →
(ODual‘𝐾) ∈
Toset) |
| 70 | 1, 69 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ODual‘𝐾) ∈ Toset) |
| 71 | | vex 3203 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V |
| 72 | | vex 3203 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ V |
| 73 | 71, 72 | brcnv 5305 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦◡ ≤ 𝑧 ↔ 𝑧 ≤ 𝑦) |
| 74 | | vex 3203 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ V |
| 75 | 72, 74 | brcnv 5305 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧◡ ≤ 𝑥 ↔ 𝑥 ≤ 𝑧) |
| 76 | 73, 75 | anbi12ci 734 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦◡ ≤ 𝑧 ∧ 𝑧◡
≤
𝑥) ↔ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) |
| 77 | 76 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐵 → ((𝑦◡
≤
𝑧 ∧ 𝑧◡
≤
𝑥) ↔ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) |
| 78 | 77 | rabbiia 3185 |
. . . . . . . . . . . . 13
⊢ {𝑧 ∈ 𝐵 ∣ (𝑦◡
≤
𝑧 ∧ 𝑧◡
≤
𝑥)} = {𝑧 ∈ 𝐵 ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 79 | 78, 56 | syl5eqss 3649 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑦◡
≤
𝑧 ∧ 𝑧◡
≤
𝑥)} ⊆ 𝐴) |
| 80 | 79 | ancom2s 844 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑦◡
≤
𝑧 ∧ 𝑧◡
≤
𝑥)} ⊆ 𝐴) |
| 81 | 59, 68, 70, 5, 80 | ordtrest2NEWlem 29968 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤◡
≤
𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴)))) |
| 82 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑤 ∈ V |
| 83 | 82, 72 | brcnv 5305 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤◡ ≤ 𝑧 ↔ 𝑧 ≤ 𝑤) |
| 84 | 83 | bicomi 214 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ≤ 𝑤 ↔ 𝑤◡
≤
𝑧) |
| 85 | 84 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑧 ≤ 𝑤 ↔ 𝑤◡
≤
𝑧)) |
| 86 | 85 | notbid 308 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (¬ 𝑧 ≤ 𝑤 ↔ ¬ 𝑤◡
≤
𝑧)) |
| 87 | 86 | rabbidv 3189 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤} = {𝑤 ∈ 𝐵 ∣ ¬ 𝑤◡
≤
𝑧}) |
| 88 | 87 | mpteq2dv 4745 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}) = (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤◡
≤
𝑧})) |
| 89 | 88 | rneqd 5353 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}) = ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤◡
≤
𝑧})) |
| 90 | | cnvin 5540 |
. . . . . . . . . . . . . . 15
⊢ ◡( ≤ ∩ (𝐴 × 𝐴)) = (◡ ≤ ∩ ◡(𝐴 × 𝐴)) |
| 91 | | cnvxp 5551 |
. . . . . . . . . . . . . . . 16
⊢ ◡(𝐴 × 𝐴) = (𝐴 × 𝐴) |
| 92 | 91 | ineq2i 3811 |
. . . . . . . . . . . . . . 15
⊢ (◡ ≤ ∩ ◡(𝐴 × 𝐴)) = (◡ ≤ ∩ (𝐴 × 𝐴)) |
| 93 | 90, 92 | eqtri 2644 |
. . . . . . . . . . . . . 14
⊢ ◡( ≤ ∩ (𝐴 × 𝐴)) = (◡ ≤ ∩ (𝐴 × 𝐴)) |
| 94 | 93 | fveq2i 6194 |
. . . . . . . . . . . . 13
⊢
(ordTop‘◡( ≤ ∩
(𝐴 × 𝐴))) = (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))) |
| 95 | 6 | ressprs 29655 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ Preset ) |
| 96 | 4, 5, 95 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾 ↾s 𝐴) ∈ Preset ) |
| 97 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘(𝐾
↾s 𝐴)) =
(Base‘(𝐾
↾s 𝐴)) |
| 98 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
((le‘(𝐾
↾s 𝐴))
∩ ((Base‘(𝐾
↾s 𝐴))
× (Base‘(𝐾
↾s 𝐴)))) =
((le‘(𝐾
↾s 𝐴))
∩ ((Base‘(𝐾
↾s 𝐴))
× (Base‘(𝐾
↾s 𝐴)))) |
| 99 | 97, 98 | ordtcnvNEW 29966 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ↾s 𝐴) ∈ Preset →
(ordTop‘◡((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) =
(ordTop‘((le‘(𝐾
↾s 𝐴))
∩ ((Base‘(𝐾
↾s 𝐴))
× (Base‘(𝐾
↾s 𝐴)))))) |
| 100 | 96, 99 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ordTop‘◡((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) = (ordTop‘((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))))) |
| 101 | 6, 7 | prsss 29962 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
| 102 | 4, 5, 101 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
| 103 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) |
| 104 | 103, 64 | ressle 16059 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
| 105 | 19, 104 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
| 106 | 103, 6 | ressbas2 15931 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
| 107 | 5, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
| 108 | 107 | sqxpeqd 5141 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴 × 𝐴) = ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) |
| 109 | 105, 108 | ineq12d 3815 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((le‘𝐾) ∩ (𝐴 × 𝐴)) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
| 110 | 102, 109 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
| 111 | 110 | cnveqd 5298 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ◡( ≤ ∩ (𝐴 × 𝐴)) = ◡((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
| 112 | 111 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ordTop‘◡( ≤ ∩ (𝐴 × 𝐴))) = (ordTop‘◡((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))))) |
| 113 | 110 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) =
(ordTop‘((le‘(𝐾
↾s 𝐴))
∩ ((Base‘(𝐾
↾s 𝐴))
× (Base‘(𝐾
↾s 𝐴)))))) |
| 114 | 100, 112,
113 | 3eqtr4d 2666 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ordTop‘◡( ≤ ∩ (𝐴 × 𝐴))) = (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
| 115 | 94, 114 | syl5reqr 2671 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) = (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴)))) |
| 116 | 115 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ (𝑣 ∩ 𝐴) ∈ (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))))) |
| 117 | 89, 116 | raleqbidv 3152 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤◡
≤
𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))))) |
| 118 | 81, 117 | mpbird 247 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
| 119 | | ralunb 3794 |
. . . . . . . . 9
⊢
(∀𝑣 ∈
(ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
| 120 | 57, 118, 119 | sylanbrc 698 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑣 ∈ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
| 121 | | ralunb 3794 |
. . . . . . . 8
⊢
(∀𝑣 ∈
({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ {𝐵} (𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))))) |
| 122 | 55, 120, 121 | sylanbrc 698 |
. . . . . . 7
⊢ (𝜑 → ∀𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
| 123 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴)) = (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴)) |
| 124 | 123 | fmpt 6381 |
. . . . . . 7
⊢
(∀𝑣 ∈
({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ↔ (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴)):({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))⟶(ordTop‘( ≤ ∩
(𝐴 × 𝐴)))) |
| 125 | 122, 124 | sylib 208 |
. . . . . 6
⊢ (𝜑 → (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴)):({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))⟶(ordTop‘( ≤ ∩
(𝐴 × 𝐴)))) |
| 126 | | frn 6053 |
. . . . . 6
⊢ ((𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴)):({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤})))⟶(ordTop‘( ≤ ∩
(𝐴 × 𝐴))) → ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴)) ⊆ (ordTop‘( ≤ ∩
(𝐴 × 𝐴)))) |
| 127 | 125, 126 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝑣 ∈ ({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↦ (𝑣 ∩ 𝐴)) ⊆ (ordTop‘( ≤ ∩
(𝐴 × 𝐴)))) |
| 128 | 38, 127 | eqsstrd 3639 |
. . . 4
⊢ (𝜑 → (({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴) ⊆ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
| 129 | | tgfiss 20795 |
. . . 4
⊢
(((ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ∈ Top ∧ (({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴) ⊆ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) → (topGen‘(fi‘(({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘( ≤ ∩
(𝐴 × 𝐴)))) |
| 130 | 31, 128, 129 | syl2anc 693 |
. . 3
⊢ (𝜑 →
(topGen‘(fi‘(({𝐵} ∪ (ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧}) ∪ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘( ≤ ∩
(𝐴 × 𝐴)))) |
| 131 | 25, 130 | eqsstrd 3639 |
. 2
⊢ (𝜑 → ((ordTop‘ ≤ )
↾t 𝐴)
⊆ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) |
| 132 | 9, 131 | eqssd 3620 |
1
⊢ (𝜑 → (ordTop‘( ≤ ∩
(𝐴 × 𝐴))) = ((ordTop‘ ≤ )
↾t 𝐴)) |