Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtrest2NEW Structured version   Visualization version   Unicode version

Theorem ordtrest2NEW 29969
Description: An interval-closed set  A in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in  RR, but in other sets like  QQ there are interval-closed sets like  ( pi , +oo )  i^i  QQ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b  |-  B  =  ( Base `  K
)
ordtNEW.l  |-  .<_  =  ( ( le `  K
)  i^i  ( B  X.  B ) )
ordtrest2NEW.2  |-  ( ph  ->  K  e. Toset )
ordtrest2NEW.3  |-  ( ph  ->  A  C_  B )
ordtrest2NEW.4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  ->  { z  e.  B  |  ( x  .<_  z  /\  z  .<_  y ) }  C_  A )
Assertion
Ref Expression
ordtrest2NEW  |-  ( ph  ->  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  =  ( (ordTop `  .<_  )t  A ) )
Distinct variable groups:    x, y,  .<_    x, B, y    x, K, y    x, A, y, z    z,  .<_    z, A   
z, B    ph, x, y, z    z, K

Proof of Theorem ordtrest2NEW
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtrest2NEW.2 . . . 4  |-  ( ph  ->  K  e. Toset )
2 tospos 29658 . . . 4  |-  ( K  e. Toset  ->  K  e.  Poset )
3 posprs 16949 . . . 4  |-  ( K  e.  Poset  ->  K  e.  Preset  )
41, 2, 33syl 18 . . 3  |-  ( ph  ->  K  e.  Preset  )
5 ordtrest2NEW.3 . . 3  |-  ( ph  ->  A  C_  B )
6 ordtNEW.b . . . 4  |-  B  =  ( Base `  K
)
7 ordtNEW.l . . . 4  |-  .<_  =  ( ( le `  K
)  i^i  ( B  X.  B ) )
86, 7ordtrestNEW 29967 . . 3  |-  ( ( K  e.  Preset  /\  A  C_  B )  ->  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) )  C_  ( (ordTop ` 
.<_  )t  A ) )
94, 5, 8syl2anc 693 . 2  |-  ( ph  ->  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  C_  ( (ordTop `  .<_  )t  A ) )
10 eqid 2622 . . . . . . . 8  |-  ran  (
z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  =  ran  (
z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )
11 eqid 2622 . . . . . . . 8  |-  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
)  =  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
)
126, 7, 10, 11ordtprsval 29964 . . . . . . 7  |-  ( K  e.  Preset  ->  (ordTop `  .<_  )  =  ( topGen `  ( fi `  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) ) ) ) )
134, 12syl 17 . . . . . 6  |-  ( ph  ->  (ordTop `  .<_  )  =  ( topGen `  ( fi `  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) ) ) ) )
1413oveq1d 6665 . . . . 5  |-  ( ph  ->  ( (ordTop `  .<_  )t  A )  =  ( (
topGen `  ( fi `  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u. 
ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) ) ) )t  A ) )
15 fibas 20781 . . . . . 6  |-  ( fi
`  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) ) )  e.  TopBases
16 fvex 6201 . . . . . . . . 9  |-  ( Base `  K )  e.  _V
176, 16eqeltri 2697 . . . . . . . 8  |-  B  e. 
_V
1817a1i 11 . . . . . . 7  |-  ( ph  ->  B  e.  _V )
1918, 5ssexd 4805 . . . . . 6  |-  ( ph  ->  A  e.  _V )
20 tgrest 20963 . . . . . 6  |-  ( ( ( fi `  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) ) )  e.  TopBases  /\  A  e.  _V )  ->  ( topGen `  ( ( fi `  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u. 
ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) ) )t  A ) )  =  ( ( topGen `  ( fi `  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) ) ) )t  A ) )
2115, 19, 20sylancr 695 . . . . 5  |-  ( ph  ->  ( topGen `  ( ( fi `  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) ) )t  A ) )  =  ( ( topGen `  ( fi `  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) ) ) )t  A ) )
2214, 21eqtr4d 2659 . . . 4  |-  ( ph  ->  ( (ordTop `  .<_  )t  A )  =  ( topGen `  ( ( fi `  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u. 
ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) ) )t  A ) ) )
23 firest 16093 . . . . 5  |-  ( fi
`  ( ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )t  A ) )  =  ( ( fi `  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) ) )t  A )
2423fveq2i 6194 . . . 4  |-  ( topGen `  ( fi `  (
( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) )t  A ) ) )  =  ( topGen `  (
( fi `  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) ) )t  A ) )
2522, 24syl6eqr 2674 . . 3  |-  ( ph  ->  ( (ordTop `  .<_  )t  A )  =  ( topGen `  ( fi `  (
( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) )t  A ) ) ) )
26 fvex 6201 . . . . . . . 8  |-  ( le
`  K )  e. 
_V
2726inex1 4799 . . . . . . 7  |-  ( ( le `  K )  i^i  ( B  X.  B ) )  e. 
_V
287, 27eqeltri 2697 . . . . . 6  |-  .<_  e.  _V
2928inex1 4799 . . . . 5  |-  (  .<_  i^i  ( A  X.  A
) )  e.  _V
30 ordttop 21004 . . . . 5  |-  ( ( 
.<_  i^i  ( A  X.  A ) )  e. 
_V  ->  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  e. 
Top )
3129, 30mp1i 13 . . . 4  |-  ( ph  ->  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  e. 
Top )
326, 7, 10, 11ordtprsuni 29965 . . . . . . . . 9  |-  ( K  e.  Preset  ->  B  =  U. ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u. 
ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) ) )
334, 32syl 17 . . . . . . . 8  |-  ( ph  ->  B  =  U. ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) ) )
3433, 18eqeltrrd 2702 . . . . . . 7  |-  ( ph  ->  U. ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )  e. 
_V )
35 uniexb 6973 . . . . . . 7  |-  ( ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u. 
ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) )  e.  _V  <->  U. ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )  e. 
_V )
3634, 35sylibr 224 . . . . . 6  |-  ( ph  ->  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) )  e.  _V )
37 restval 16087 . . . . . 6  |-  ( ( ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) )  e.  _V  /\  A  e.  _V )  ->  ( ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )t  A )  =  ran  ( v  e.  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )  |->  ( v  i^i  A ) ) )
3836, 19, 37syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )t  A )  =  ran  ( v  e.  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )  |->  ( v  i^i  A ) ) )
39 sseqin2 3817 . . . . . . . . . . . 12  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )
405, 39sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  ( B  i^i  A
)  =  A )
41 eqid 2622 . . . . . . . . . . . . . . 15  |-  dom  (  .<_  i^i  ( A  X.  A ) )  =  dom  (  .<_  i^i  ( A  X.  A ) )
4241ordttopon 20997 . . . . . . . . . . . . . 14  |-  ( ( 
.<_  i^i  ( A  X.  A ) )  e. 
_V  ->  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  e.  (TopOn `  dom  (  .<_  i^i  ( A  X.  A
) ) ) )
4329, 42mp1i 13 . . . . . . . . . . . . 13  |-  ( ph  ->  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  e.  (TopOn `  dom  (  .<_  i^i  ( A  X.  A
) ) ) )
446, 7prsssdm 29963 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Preset  /\  A  C_  B )  ->  dom  (  .<_  i^i  ( A  X.  A ) )  =  A )
454, 5, 44syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  (  .<_  i^i  ( A  X.  A ) )  =  A )
4645fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ph  ->  (TopOn `  dom  (  .<_  i^i  ( A  X.  A
) ) )  =  (TopOn `  A )
)
4743, 46eleqtrd 2703 . . . . . . . . . . . 12  |-  ( ph  ->  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  e.  (TopOn `  A )
)
48 toponmax 20730 . . . . . . . . . . . 12  |-  ( (ordTop `  (  .<_  i^i  ( A  X.  A ) ) )  e.  (TopOn `  A )  ->  A  e.  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) ) )
4947, 48syl 17 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
5040, 49eqeltrd 2701 . . . . . . . . . 10  |-  ( ph  ->  ( B  i^i  A
)  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
51 elsni 4194 . . . . . . . . . . . 12  |-  ( v  e.  { B }  ->  v  =  B )
5251ineq1d 3813 . . . . . . . . . . 11  |-  ( v  e.  { B }  ->  ( v  i^i  A
)  =  ( B  i^i  A ) )
5352eleq1d 2686 . . . . . . . . . 10  |-  ( v  e.  { B }  ->  ( ( v  i^i 
A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) )  <->  ( B  i^i  A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) ) )
5450, 53syl5ibrcom 237 . . . . . . . . 9  |-  ( ph  ->  ( v  e.  { B }  ->  ( v  i^i  A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) ) ) )
5554ralrimiv 2965 . . . . . . . 8  |-  ( ph  ->  A. v  e.  { B }  ( v  i^i  A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
56 ordtrest2NEW.4 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  ->  { z  e.  B  |  ( x  .<_  z  /\  z  .<_  y ) }  C_  A )
576, 7, 1, 5, 56ordtrest2NEWlem 29968 . . . . . . . . 9  |-  ( ph  ->  A. v  e.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } ) ( v  i^i 
A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
58 eqid 2622 . . . . . . . . . . . 12  |-  (ODual `  K )  =  (ODual `  K )
5958, 6odubas 17133 . . . . . . . . . . 11  |-  B  =  ( Base `  (ODual `  K ) )
607cnveqi 5297 . . . . . . . . . . . 12  |-  `'  .<_  =  `' ( ( le
`  K )  i^i  ( B  X.  B
) )
61 cnvin 5540 . . . . . . . . . . . . 13  |-  `' ( ( le `  K
)  i^i  ( B  X.  B ) )  =  ( `' ( le
`  K )  i^i  `' ( B  X.  B ) )
62 cnvxp 5551 . . . . . . . . . . . . . 14  |-  `' ( B  X.  B )  =  ( B  X.  B )
6362ineq2i 3811 . . . . . . . . . . . . 13  |-  ( `' ( le `  K
)  i^i  `' ( B  X.  B ) )  =  ( `' ( le `  K )  i^i  ( B  X.  B ) )
64 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( le
`  K )  =  ( le `  K
)
6558, 64oduleval 17131 . . . . . . . . . . . . . 14  |-  `' ( le `  K )  =  ( le `  (ODual `  K ) )
6665ineq1i 3810 . . . . . . . . . . . . 13  |-  ( `' ( le `  K
)  i^i  ( B  X.  B ) )  =  ( ( le `  (ODual `  K ) )  i^i  ( B  X.  B ) )
6761, 63, 663eqtri 2648 . . . . . . . . . . . 12  |-  `' ( ( le `  K
)  i^i  ( B  X.  B ) )  =  ( ( le `  (ODual `  K ) )  i^i  ( B  X.  B ) )
6860, 67eqtri 2644 . . . . . . . . . . 11  |-  `'  .<_  =  ( ( le `  (ODual `  K ) )  i^i  ( B  X.  B ) )
6958odutos 29663 . . . . . . . . . . . 12  |-  ( K  e. Toset  ->  (ODual `  K
)  e. Toset )
701, 69syl 17 . . . . . . . . . . 11  |-  ( ph  ->  (ODual `  K )  e. Toset )
71 vex 3203 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
72 vex 3203 . . . . . . . . . . . . . . . . 17  |-  z  e. 
_V
7371, 72brcnv 5305 . . . . . . . . . . . . . . . 16  |-  ( y `'  .<_  z  <->  z  .<_  y )
74 vex 3203 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
7572, 74brcnv 5305 . . . . . . . . . . . . . . . 16  |-  ( z `'  .<_  x  <->  x  .<_  z )
7673, 75anbi12ci 734 . . . . . . . . . . . . . . 15  |-  ( ( y `'  .<_  z  /\  z `'  .<_  x )  <-> 
( x  .<_  z  /\  z  .<_  y ) )
7776a1i 11 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  (
( y `'  .<_  z  /\  z `'  .<_  x )  <->  ( x  .<_  z  /\  z  .<_  y ) ) )
7877rabbiia 3185 . . . . . . . . . . . . 13  |-  { z  e.  B  |  ( y `'  .<_  z  /\  z `'  .<_  x ) }  =  { z  e.  B  |  ( x  .<_  z  /\  z  .<_  y ) }
7978, 56syl5eqss 3649 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  ->  { z  e.  B  |  ( y `' 
.<_  z  /\  z `'  .<_  x ) } 
C_  A )
8079ancom2s 844 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  A  /\  x  e.  A ) )  ->  { z  e.  B  |  ( y `' 
.<_  z  /\  z `'  .<_  x ) } 
C_  A )
8159, 68, 70, 5, 80ordtrest2NEWlem 29968 . . . . . . . . . 10  |-  ( ph  ->  A. v  e.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  w `'  .<_  z } ) ( v  i^i  A )  e.  (ordTop `  ( `'  .<_  i^i  ( A  X.  A ) ) ) )
82 vex 3203 . . . . . . . . . . . . . . . . . 18  |-  w  e. 
_V
8382, 72brcnv 5305 . . . . . . . . . . . . . . . . 17  |-  ( w `'  .<_  z  <->  z  .<_  w )
8483bicomi 214 . . . . . . . . . . . . . . . 16  |-  ( z 
.<_  w  <->  w `'  .<_  z )
8584a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( z  .<_  w  <->  w `'  .<_  z ) )
8685notbid 308 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( -.  z  .<_  w 
<->  -.  w `'  .<_  z ) )
8786rabbidv 3189 . . . . . . . . . . . . 13  |-  ( ph  ->  { w  e.  B  |  -.  z  .<_  w }  =  { w  e.  B  |  -.  w `'  .<_  z } )
8887mpteq2dv 4745 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
)  =  ( z  e.  B  |->  { w  e.  B  |  -.  w `'  .<_  z } ) )
8988rneqd 5353 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } )  =  ran  ( z  e.  B  |->  { w  e.  B  |  -.  w `'  .<_  z } ) )
90 cnvin 5540 . . . . . . . . . . . . . . 15  |-  `' ( 
.<_  i^i  ( A  X.  A ) )  =  ( `'  .<_  i^i  `' ( A  X.  A
) )
91 cnvxp 5551 . . . . . . . . . . . . . . . 16  |-  `' ( A  X.  A )  =  ( A  X.  A )
9291ineq2i 3811 . . . . . . . . . . . . . . 15  |-  ( `' 
.<_  i^i  `' ( A  X.  A ) )  =  ( `'  .<_  i^i  ( A  X.  A
) )
9390, 92eqtri 2644 . . . . . . . . . . . . . 14  |-  `' ( 
.<_  i^i  ( A  X.  A ) )  =  ( `'  .<_  i^i  ( A  X.  A ) )
9493fveq2i 6194 . . . . . . . . . . . . 13  |-  (ordTop `  `' (  .<_  i^i  ( A  X.  A ) ) )  =  (ordTop `  ( `'  .<_  i^i  ( A  X.  A ) ) )
956ressprs 29655 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Preset  /\  A  C_  B )  ->  ( Ks  A )  e.  Preset  )
964, 5, 95syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Ks  A )  e.  Preset  )
97 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( Base `  ( Ks  A ) )  =  ( Base `  ( Ks  A ) )
98 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( ( le `  ( Ks  A ) )  i^i  (
( Base `  ( Ks  A
) )  X.  ( Base `  ( Ks  A ) ) ) )  =  ( ( le `  ( Ks  A ) )  i^i  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) )
9997, 98ordtcnvNEW 29966 . . . . . . . . . . . . . . 15  |-  ( ( Ks  A )  e.  Preset  -> 
(ordTop `  `' (
( le `  ( Ks  A ) )  i^i  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) ) )  =  (ordTop `  ( ( le `  ( Ks  A ) )  i^i  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) ) ) )
10096, 99syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  (ordTop `  `' (
( le `  ( Ks  A ) )  i^i  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) ) )  =  (ordTop `  ( ( le `  ( Ks  A ) )  i^i  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) ) ) )
1016, 7prsss 29962 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Preset  /\  A  C_  B )  ->  (  .<_  i^i  ( A  X.  A ) )  =  ( ( le `  K )  i^i  ( A  X.  A ) ) )
1024, 5, 101syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  (  .<_  i^i  ( A  X.  A ) )  =  ( ( le
`  K )  i^i  ( A  X.  A
) ) )
103 eqid 2622 . . . . . . . . . . . . . . . . . . . 20  |-  ( Ks  A )  =  ( Ks  A )
104103, 64ressle 16059 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  _V  ->  ( le `  K )  =  ( le `  ( Ks  A ) ) )
10519, 104syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( le `  K
)  =  ( le
`  ( Ks  A ) ) )
106103, 6ressbas2 15931 . . . . . . . . . . . . . . . . . . . 20  |-  ( A 
C_  B  ->  A  =  ( Base `  ( Ks  A ) ) )
1075, 106syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  =  ( Base `  ( Ks  A ) ) )
108107sqxpeqd 5141 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( A  X.  A
)  =  ( (
Base `  ( Ks  A
) )  X.  ( Base `  ( Ks  A ) ) ) )
109105, 108ineq12d 3815 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( le `  K )  i^i  ( A  X.  A ) )  =  ( ( le
`  ( Ks  A ) )  i^i  ( (
Base `  ( Ks  A
) )  X.  ( Base `  ( Ks  A ) ) ) ) )
110102, 109eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  (  .<_  i^i  ( A  X.  A ) )  =  ( ( le
`  ( Ks  A ) )  i^i  ( (
Base `  ( Ks  A
) )  X.  ( Base `  ( Ks  A ) ) ) ) )
111110cnveqd 5298 . . . . . . . . . . . . . . 15  |-  ( ph  ->  `' (  .<_  i^i  ( A  X.  A ) )  =  `' ( ( le `  ( Ks  A ) )  i^i  (
( Base `  ( Ks  A
) )  X.  ( Base `  ( Ks  A ) ) ) ) )
112111fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ph  ->  (ordTop `  `' (  .<_  i^i  ( A  X.  A ) ) )  =  (ordTop `  `' ( ( le `  ( Ks  A ) )  i^i  ( ( Base `  ( Ks  A ) )  X.  ( Base `  ( Ks  A ) ) ) ) ) )
113110fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ph  ->  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  =  (ordTop `  ( ( le `  ( Ks  A ) )  i^i  ( (
Base `  ( Ks  A
) )  X.  ( Base `  ( Ks  A ) ) ) ) ) )
114100, 112, 1133eqtr4d 2666 . . . . . . . . . . . . 13  |-  ( ph  ->  (ordTop `  `' (  .<_  i^i  ( A  X.  A ) ) )  =  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
11594, 114syl5reqr 2671 . . . . . . . . . . . 12  |-  ( ph  ->  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  =  (ordTop `  ( `'  .<_  i^i  ( A  X.  A ) ) ) )
116115eleq2d 2687 . . . . . . . . . . 11  |-  ( ph  ->  ( ( v  i^i 
A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) )  <->  ( v  i^i 
A )  e.  (ordTop `  ( `'  .<_  i^i  ( A  X.  A ) ) ) ) )
11789, 116raleqbidv 3152 . . . . . . . . . 10  |-  ( ph  ->  ( A. v  e. 
ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ( v  i^i  A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) )  <->  A. v  e.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  w `'  .<_  z } ) ( v  i^i  A )  e.  (ordTop `  ( `'  .<_  i^i  ( A  X.  A ) ) ) ) )
11881, 117mpbird 247 . . . . . . . . 9  |-  ( ph  ->  A. v  e.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ( v  i^i 
A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
119 ralunb 3794 . . . . . . . . 9  |-  ( A. v  e.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) ( v  i^i  A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  <->  ( A. v  e.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } ) ( v  i^i  A
)  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) )  /\  A. v  e. 
ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ( v  i^i  A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) ) )
12057, 118, 119sylanbrc 698 . . . . . . . 8  |-  ( ph  ->  A. v  e.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u. 
ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) ( v  i^i  A
)  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
121 ralunb 3794 . . . . . . . 8  |-  ( A. v  e.  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) ) ( v  i^i  A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) )  <-> 
( A. v  e. 
{ B }  (
v  i^i  A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  /\  A. v  e.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) ( v  i^i  A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) ) ) )
12255, 120, 121sylanbrc 698 . . . . . . 7  |-  ( ph  ->  A. v  e.  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u. 
ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) ) ( v  i^i 
A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
123 eqid 2622 . . . . . . . 8  |-  ( v  e.  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )  |->  ( v  i^i  A ) )  =  ( v  e.  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )  |->  ( v  i^i  A ) )
124123fmpt 6381 . . . . . . 7  |-  ( A. v  e.  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) ) ( v  i^i  A )  e.  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) )  <-> 
( v  e.  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u. 
ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) )  |->  ( v  i^i 
A ) ) : ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) ) --> (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
125122, 124sylib 208 . . . . . 6  |-  ( ph  ->  ( v  e.  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u. 
ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) )  |->  ( v  i^i 
A ) ) : ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) ) --> (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
126 frn 6053 . . . . . 6  |-  ( ( v  e.  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )  |->  ( v  i^i  A ) ) : ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) ) --> (ordTop `  (  .<_  i^i  ( A  X.  A ) ) )  ->  ran  ( v  e.  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )  |->  ( v  i^i  A ) )  C_  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
127125, 126syl 17 . . . . 5  |-  ( ph  ->  ran  ( v  e.  ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  ( z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w } ) ) )  |->  ( v  i^i  A ) ) 
C_  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) ) )
12838, 127eqsstrd 3639 . . . 4  |-  ( ph  ->  ( ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )t  A ) 
C_  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) ) )
129 tgfiss 20795 . . . 4  |-  ( ( (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  e. 
Top  /\  ( ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )t  A ) 
C_  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) ) )  ->  ( topGen `  ( fi `  ( ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )t  A ) ) )  C_  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
13031, 128, 129syl2anc 693 . . 3  |-  ( ph  ->  ( topGen `  ( fi `  ( ( { B }  u.  ( ran  ( z  e.  B  |->  { w  e.  B  |  -.  w  .<_  z } )  u.  ran  (
z  e.  B  |->  { w  e.  B  |  -.  z  .<_  w }
) ) )t  A ) ) )  C_  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
13125, 130eqsstrd 3639 . 2  |-  ( ph  ->  ( (ordTop `  .<_  )t  A )  C_  (ordTop `  (  .<_  i^i  ( A  X.  A ) ) ) )
1329, 131eqssd 3620 1  |-  ( ph  ->  (ordTop `  (  .<_  i^i  ( A  X.  A
) ) )  =  ( (ordTop `  .<_  )t  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   {csn 4177   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   ficfi 8316   Basecbs 15857   ↾s cress 15858   lecple 15948   ↾t crest 16081   topGenctg 16098  ordTopcordt 16159    Preset cpreset 16926   Posetcpo 16940  Tosetctos 17033  ODualcodu 17128   Topctop 20698  TopOnctopon 20715   TopBasesctb 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-ple 15961  df-rest 16083  df-topgen 16104  df-ordt 16161  df-preset 16928  df-poset 16946  df-toset 17034  df-odu 17129  df-top 20699  df-topon 20716  df-bases 20750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator