MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plycjlem Structured version   Visualization version   GIF version

Theorem plycjlem 24032
Description: Lemma for plycj 24033 and coecj 24034. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.1 𝑁 = (deg‘𝐹)
plycj.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycjlem.3 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
plycjlem (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝐹,𝑧   𝑘,𝑁,𝑧   𝑆,𝑘,𝑧
Allowed substitution hints:   𝐺(𝑧,𝑘)

Proof of Theorem plycjlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 plycj.2 . . 3 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
2 cjcl 13845 . . . . 5 (𝑧 ∈ ℂ → (∗‘𝑧) ∈ ℂ)
32adantl 482 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (∗‘𝑧) ∈ ℂ)
4 cjf 13844 . . . . . 6 ∗:ℂ⟶ℂ
54a1i 11 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → ∗:ℂ⟶ℂ)
65feqmptd 6249 . . . 4 (𝐹 ∈ (Poly‘𝑆) → ∗ = (𝑧 ∈ ℂ ↦ (∗‘𝑧)))
7 fzfid 12772 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin)
8 plycjlem.3 . . . . . . . . . 10 𝐴 = (coeff‘𝐹)
98coef3 23988 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
109adantr 481 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
11 elfznn0 12433 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
12 ffvelrn 6357 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
1310, 11, 12syl2an 494 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
14 expcl 12878 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
1511, 14sylan2 491 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ (0...𝑁)) → (𝑥𝑘) ∈ ℂ)
1615adantll 750 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥𝑘) ∈ ℂ)
1713, 16mulcld 10060 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
187, 17fsumcl 14464 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
19 plycj.1 . . . . . 6 𝑁 = (deg‘𝐹)
208, 19coeid 23994 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
21 fveq2 6191 . . . . 5 (𝑧 = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) → (∗‘𝑧) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
2218, 20, 6, 21fmptco 6396 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (∗ ∘ 𝐹) = (𝑥 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))))
23 oveq1 6657 . . . . . . 7 (𝑥 = (∗‘𝑧) → (𝑥𝑘) = ((∗‘𝑧)↑𝑘))
2423oveq2d 6666 . . . . . 6 (𝑥 = (∗‘𝑧) → ((𝐴𝑘) · (𝑥𝑘)) = ((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))
2524sumeq2sdv 14435 . . . . 5 (𝑥 = (∗‘𝑧) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))
2625fveq2d 6195 . . . 4 (𝑥 = (∗‘𝑧) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))))
273, 6, 22, 26fmptco 6396 . . 3 (𝐹 ∈ (Poly‘𝑆) → ((∗ ∘ 𝐹) ∘ ∗) = (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))))
281, 27syl5eq 2668 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))))
29 fzfid 12772 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
309adantr 481 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
3130, 11, 12syl2an 494 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
32 expcl 12878 . . . . . . 7 (((∗‘𝑧) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘𝑧)↑𝑘) ∈ ℂ)
333, 11, 32syl2an 494 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘𝑧)↑𝑘) ∈ ℂ)
3431, 33mulcld 10060 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · ((∗‘𝑧)↑𝑘)) ∈ ℂ)
3529, 34fsumcj 14542 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))))
3631, 33cjmuld 13961 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = ((∗‘(𝐴𝑘)) · (∗‘((∗‘𝑧)↑𝑘))))
37 fvco3 6275 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
3830, 11, 37syl2an 494 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
39 cjexp 13890 . . . . . . . . 9 (((∗‘𝑧) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘))
403, 11, 39syl2an 494 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘))
41 cjcj 13880 . . . . . . . . . 10 (𝑧 ∈ ℂ → (∗‘(∗‘𝑧)) = 𝑧)
4241ad2antlr 763 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘(∗‘𝑧)) = 𝑧)
4342oveq1d 6665 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘(∗‘𝑧))↑𝑘) = (𝑧𝑘))
4440, 43eqtr2d 2657 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧𝑘) = (∗‘((∗‘𝑧)↑𝑘)))
4538, 44oveq12d 6668 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)) = ((∗‘(𝐴𝑘)) · (∗‘((∗‘𝑧)↑𝑘))))
4636, 45eqtr4d 2659 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = (((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
4746sumeq2dv 14433 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
4835, 47eqtrd 2656 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑧 ∈ ℂ) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
4948mpteq2dva 4744 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
5028, 49eqtrd 2656 1 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cmpt 4729  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936   · cmul 9941  0cn0 11292  ...cfz 12326  cexp 12860  ccj 13836  Σcsu 14416  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  plycj  24033  coecj  24034
  Copyright terms: Public domain W3C validator