MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3lem Structured version   Visualization version   Unicode version

Theorem pmatcollpw3lem 20588
Description: Lemma for pmatcollpw3 20589 and pmatcollpw3fi 20590: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p  |-  P  =  (Poly1 `  R )
pmatcollpw.c  |-  C  =  ( N Mat  P )
pmatcollpw.b  |-  B  =  ( Base `  C
)
pmatcollpw.m  |-  .*  =  ( .s `  C )
pmatcollpw.e  |-  .^  =  (.g
`  (mulGrp `  P )
)
pmatcollpw.x  |-  X  =  (var1 `  R )
pmatcollpw.t  |-  T  =  ( N matToPolyMat  R )
pmatcollpw3.a  |-  A  =  ( N Mat  R )
pmatcollpw3.d  |-  D  =  ( Base `  A
)
Assertion
Ref Expression
pmatcollpw3lem  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  -> 
( M  =  ( C  gsumg  ( n  e.  I  |->  ( ( n  .^  X )  .*  ( T `  ( M decompPMat  n ) ) ) ) )  ->  E. f  e.  ( D  ^m  I
) M  =  ( C  gsumg  ( n  e.  I  |->  ( ( n  .^  X )  .*  ( T `  ( f `  n ) ) ) ) ) ) )
Distinct variable groups:    B, n    n, M    n, N    P, n    R, n    n, X    .^ , n    C, n    B, f    C, f, n    D, f   
f, I, n    f, M    f, N    R, f    T, f    f, X    .^ , f    .* , f
Allowed substitution hints:    A( f, n)    D( n)    P( f)    T( n)    .* ( n)

Proof of Theorem pmatcollpw3lem
Dummy variables  i 
j  k  l  x  y  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 5324 . . . . . . . . 9  |-  ( x  =  y  ->  dom  x  =  dom  y )
21dmeqd 5326 . . . . . . . 8  |-  ( x  =  y  ->  dom  dom  x  =  dom  dom  y )
3 oveq 6656 . . . . . . . . . 10  |-  ( x  =  y  ->  (
i x j )  =  ( i y j ) )
43fveq2d 6195 . . . . . . . . 9  |-  ( x  =  y  ->  (coe1 `  ( i x j ) )  =  (coe1 `  ( i y j ) ) )
54fveq1d 6193 . . . . . . . 8  |-  ( x  =  y  ->  (
(coe1 `  ( i x j ) ) `  k )  =  ( (coe1 `  ( i y j ) ) `  k ) )
62, 2, 5mpt2eq123dv 6717 . . . . . . 7  |-  ( x  =  y  ->  (
i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) )  =  ( i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  k
) ) )
7 fveq2 6191 . . . . . . . 8  |-  ( k  =  l  ->  (
(coe1 `  ( i y j ) ) `  k )  =  ( (coe1 `  ( i y j ) ) `  l ) )
87mpt2eq3dv 6721 . . . . . . 7  |-  ( k  =  l  ->  (
i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  k
) )  =  ( i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  l
) ) )
96, 8cbvmpt2v 6735 . . . . . 6  |-  ( x  e.  B ,  k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  (
i x j ) ) `  k ) ) )  =  ( y  e.  B , 
l  e.  I  |->  ( i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  l
) ) )
10 dmexg 7097 . . . . . . . . . . 11  |-  ( y  e.  B  ->  dom  y  e.  _V )
11 dmexg 7097 . . . . . . . . . . 11  |-  ( dom  y  e.  _V  ->  dom 
dom  y  e.  _V )
1210, 11syl 17 . . . . . . . . . 10  |-  ( y  e.  B  ->  dom  dom  y  e.  _V )
1312, 12jca 554 . . . . . . . . 9  |-  ( y  e.  B  ->  ( dom  dom  y  e.  _V  /\ 
dom  dom  y  e.  _V ) )
1413ad2antrl 764 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  (
y  e.  B  /\  l  e.  I )
)  ->  ( dom  dom  y  e.  _V  /\  dom  dom  y  e.  _V ) )
15 mpt2exga 7246 . . . . . . . 8  |-  ( ( dom  dom  y  e.  _V  /\  dom  dom  y  e.  _V )  ->  (
i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  l
) )  e.  _V )
1614, 15syl 17 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  (
y  e.  B  /\  l  e.  I )
)  ->  ( i  e.  dom  dom  y , 
j  e.  dom  dom  y  |->  ( (coe1 `  (
i y j ) ) `  l ) )  e.  _V )
1716ralrimivva 2971 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  ->  A. y  e.  B  A. l  e.  I 
( i  e.  dom  dom  y ,  j  e. 
dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  l
) )  e.  _V )
18 simprr 796 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  ->  I  =/=  (/) )
19 nn0ex 11298 . . . . . . . 8  |-  NN0  e.  _V
2019ssex 4802 . . . . . . 7  |-  ( I 
C_  NN0  ->  I  e. 
_V )
2120ad2antrl 764 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  ->  I  e.  _V )
22 simp3 1063 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  M  e.  B )
2322adantr 481 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  ->  M  e.  B )
249, 17, 18, 21, 23mpt2curryvald 7396 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  -> 
(curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M )  =  ( l  e.  I  |-> 
[_ M  /  y ]_ ( i  e.  dom  dom  y ,  j  e. 
dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  l
) ) ) )
25 fveq2 6191 . . . . . . . . 9  |-  ( l  =  k  ->  (
(coe1 `  ( i y j ) ) `  l )  =  ( (coe1 `  ( i y j ) ) `  k ) )
2625mpt2eq3dv 6721 . . . . . . . 8  |-  ( l  =  k  ->  (
i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  l
) )  =  ( i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  k
) ) )
2726csbeq2dv 3992 . . . . . . 7  |-  ( l  =  k  ->  [_ M  /  y ]_ (
i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  l
) )  =  [_ M  /  y ]_ (
i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  k
) ) )
28 eqcom 2629 . . . . . . . . 9  |-  ( x  =  y  <->  y  =  x )
29 eqcom 2629 . . . . . . . . 9  |-  ( ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) )  =  ( i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  k
) )  <->  ( i  e.  dom  dom  y , 
j  e.  dom  dom  y  |->  ( (coe1 `  (
i y j ) ) `  k ) )  =  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  (
i x j ) ) `  k ) ) )
306, 28, 293imtr3i 280 . . . . . . . 8  |-  ( y  =  x  ->  (
i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  k
) )  =  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) )
3130cbvcsbv 3539 . . . . . . 7  |-  [_ M  /  y ]_ (
i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  k
) )  =  [_ M  /  x ]_ (
i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) )
3227, 31syl6eq 2672 . . . . . 6  |-  ( l  =  k  ->  [_ M  /  y ]_ (
i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  l
) )  =  [_ M  /  x ]_ (
i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) )
3332cbvmptv 4750 . . . . 5  |-  ( l  e.  I  |->  [_ M  /  y ]_ (
i  e.  dom  dom  y ,  j  e.  dom  dom  y  |->  ( (coe1 `  ( i y j ) ) `  l
) ) )  =  ( k  e.  I  |-> 
[_ M  /  x ]_ ( i  e.  dom  dom  x ,  j  e. 
dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) )
3424, 33syl6eq 2672 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  -> 
(curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M )  =  ( k  e.  I  |-> 
[_ M  /  x ]_ ( i  e.  dom  dom  x ,  j  e. 
dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) ) )
35 dmeq 5324 . . . . . . . . . . 11  |-  ( x  =  M  ->  dom  x  =  dom  M )
3635dmeqd 5326 . . . . . . . . . 10  |-  ( x  =  M  ->  dom  dom  x  =  dom  dom  M )
37 oveq 6656 . . . . . . . . . . . 12  |-  ( x  =  M  ->  (
i x j )  =  ( i M j ) )
3837fveq2d 6195 . . . . . . . . . . 11  |-  ( x  =  M  ->  (coe1 `  ( i x j ) )  =  (coe1 `  ( i M j ) ) )
3938fveq1d 6193 . . . . . . . . . 10  |-  ( x  =  M  ->  (
(coe1 `  ( i x j ) ) `  k )  =  ( (coe1 `  ( i M j ) ) `  k ) )
4036, 36, 39mpt2eq123dv 6717 . . . . . . . . 9  |-  ( x  =  M  ->  (
i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) )  =  ( i  e.  dom  dom  M ,  j  e.  dom  dom 
M  |->  ( (coe1 `  (
i M j ) ) `  k ) ) )
4140adantl 482 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  x  =  M )  ->  (
i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) )  =  ( i  e.  dom  dom  M ,  j  e.  dom  dom 
M  |->  ( (coe1 `  (
i M j ) ) `  k ) ) )
4222, 41csbied 3560 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  [_ M  /  x ]_ ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  (
i x j ) ) `  k ) )  =  ( i  e.  dom  dom  M ,  j  e.  dom  dom 
M  |->  ( (coe1 `  (
i M j ) ) `  k ) ) )
43 pmatcollpw.c . . . . . . . . . . . . 13  |-  C  =  ( N Mat  P )
44 eqid 2622 . . . . . . . . . . . . 13  |-  ( Base `  P )  =  (
Base `  P )
45 pmatcollpw.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  C
)
4643, 44, 45matbas2i 20228 . . . . . . . . . . . 12  |-  ( M  e.  B  ->  M  e.  ( ( Base `  P
)  ^m  ( N  X.  N ) ) )
47 elmapi 7879 . . . . . . . . . . . 12  |-  ( M  e.  ( ( Base `  P )  ^m  ( N  X.  N ) )  ->  M : ( N  X.  N ) --> ( Base `  P
) )
48 fdm 6051 . . . . . . . . . . . . . 14  |-  ( M : ( N  X.  N ) --> ( Base `  P )  ->  dom  M  =  ( N  X.  N ) )
4948dmeqd 5326 . . . . . . . . . . . . 13  |-  ( M : ( N  X.  N ) --> ( Base `  P )  ->  dom  dom 
M  =  dom  ( N  X.  N ) )
50 dmxpid 5345 . . . . . . . . . . . . 13  |-  dom  ( N  X.  N )  =  N
5149, 50syl6req 2673 . . . . . . . . . . . 12  |-  ( M : ( N  X.  N ) --> ( Base `  P )  ->  N  =  dom  dom  M )
5246, 47, 513syl 18 . . . . . . . . . . 11  |-  ( M  e.  B  ->  N  =  dom  dom  M )
53523ad2ant3 1084 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  N  =  dom  dom  M )
5453adantr 481 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  m  =  M )  ->  N  =  dom  dom  M )
55 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  m  =  M )  ->  m  =  M )
5655oveqd 6667 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  m  =  M )  ->  (
i m j )  =  ( i M j ) )
5756fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  m  =  M )  ->  (coe1 `  ( i m j ) )  =  (coe1 `  ( i M j ) ) )
5857fveq1d 6193 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  m  =  M )  ->  (
(coe1 `  ( i m j ) ) `  k )  =  ( (coe1 `  ( i M j ) ) `  k ) )
5954, 54, 58mpt2eq123dv 6717 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  m  =  M )  ->  (
i  e.  N , 
j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k ) )  =  ( i  e.  dom  dom 
M ,  j  e. 
dom  dom  M  |->  ( (coe1 `  ( i M j ) ) `  k
) ) )
6022, 59csbied 3560 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  [_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k
) )  =  ( i  e.  dom  dom  M ,  j  e.  dom  dom 
M  |->  ( (coe1 `  (
i M j ) ) `  k ) ) )
6142, 60eqtr4d 2659 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  [_ M  /  x ]_ ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  (
i x j ) ) `  k ) )  =  [_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k
) ) )
6261adantr 481 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  ->  [_ M  /  x ]_ ( i  e.  dom  dom  x ,  j  e. 
dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) )  =  [_ M  /  m ]_ (
i  e.  N , 
j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k ) ) )
6362mpteq2dv 4745 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  -> 
( k  e.  I  |-> 
[_ M  /  x ]_ ( i  e.  dom  dom  x ,  j  e. 
dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) )  =  ( k  e.  I  |-> 
[_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k ) ) ) )
6434, 63eqtrd 2656 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  -> 
(curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M )  =  ( k  e.  I  |-> 
[_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k ) ) ) )
65 oveq 6656 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
i m j )  =  ( i M j ) )
6665adantl 482 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  m  =  M )  ->  (
i m j )  =  ( i M j ) )
6766fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  m  =  M )  ->  (coe1 `  ( i m j ) )  =  (coe1 `  ( i M j ) ) )
6867fveq1d 6193 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  m  =  M )  ->  (
(coe1 `  ( i m j ) ) `  k )  =  ( (coe1 `  ( i M j ) ) `  k ) )
6968mpt2eq3dv 6721 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  m  =  M )  ->  (
i  e.  N , 
j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k ) )  =  ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i M j ) ) `  k ) ) )
7022, 69csbied 3560 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  [_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k
) )  =  ( i  e.  N , 
j  e.  N  |->  ( (coe1 `  ( i M j ) ) `  k ) ) )
7170ad2antrr 762 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  ->  [_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k
) )  =  ( i  e.  N , 
j  e.  N  |->  ( (coe1 `  ( i M j ) ) `  k ) ) )
72 pmatcollpw3.a . . . . . . 7  |-  A  =  ( N Mat  R )
73 eqid 2622 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
74 pmatcollpw3.d . . . . . . 7  |-  D  =  ( Base `  A
)
75 simpll1 1100 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  ->  N  e.  Fin )
76 simpll2 1101 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  ->  R  e.  CRing )
77 simp2 1062 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  /\  i  e.  N  /\  j  e.  N
)  ->  i  e.  N )
78 simp3 1063 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  /\  i  e.  N  /\  j  e.  N
)  ->  j  e.  N )
7923adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  ->  M  e.  B )
80793ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  /\  i  e.  N  /\  j  e.  N
)  ->  M  e.  B )
8143, 44, 45, 77, 78, 80matecld 20232 . . . . . . . 8  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  /\  i  e.  N  /\  j  e.  N
)  ->  ( i M j )  e.  ( Base `  P
) )
82 ssel 3597 . . . . . . . . . . 11  |-  ( I 
C_  NN0  ->  ( k  e.  I  ->  k  e.  NN0 ) )
8382ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  -> 
( k  e.  I  ->  k  e.  NN0 )
)
8483imp 445 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  ->  k  e.  NN0 )
85843ad2ant1 1082 . . . . . . . 8  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  /\  i  e.  N  /\  j  e.  N
)  ->  k  e.  NN0 )
86 eqid 2622 . . . . . . . . 9  |-  (coe1 `  (
i M j ) )  =  (coe1 `  (
i M j ) )
87 pmatcollpw.p . . . . . . . . 9  |-  P  =  (Poly1 `  R )
8886, 44, 87, 73coe1fvalcl 19582 . . . . . . . 8  |-  ( ( ( i M j )  e.  ( Base `  P )  /\  k  e.  NN0 )  ->  (
(coe1 `  ( i M j ) ) `  k )  e.  (
Base `  R )
)
8981, 85, 88syl2anc 693 . . . . . . 7  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  /\  i  e.  N  /\  j  e.  N
)  ->  ( (coe1 `  ( i M j ) ) `  k
)  e.  ( Base `  R ) )
9072, 73, 74, 75, 76, 89matbas2d 20229 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  ->  (
i  e.  N , 
j  e.  N  |->  ( (coe1 `  ( i M j ) ) `  k ) )  e.  D )
9171, 90eqeltrd 2701 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  k  e.  I )  ->  [_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k
) )  e.  D
)
92 eqid 2622 . . . . 5  |-  ( k  e.  I  |->  [_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k
) ) )  =  ( k  e.  I  |-> 
[_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k ) ) )
9391, 92fmptd 6385 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  -> 
( k  e.  I  |-> 
[_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k ) ) ) : I --> D )
94 fvex 6201 . . . . . . 7  |-  ( Base `  A )  e.  _V
9574, 94eqeltri 2697 . . . . . 6  |-  D  e. 
_V
9695a1i 11 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  D  e.  _V )
9720adantr 481 . . . . 5  |-  ( ( I  C_  NN0  /\  I  =/=  (/) )  ->  I  e.  _V )
98 elmapg 7870 . . . . 5  |-  ( ( D  e.  _V  /\  I  e.  _V )  ->  ( ( k  e.  I  |->  [_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k ) ) )  e.  ( D  ^m  I )  <->  ( k  e.  I  |->  [_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k
) ) ) : I --> D ) )
9996, 97, 98syl2an 494 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  -> 
( ( k  e.  I  |->  [_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k ) ) )  e.  ( D  ^m  I )  <->  ( k  e.  I  |->  [_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k
) ) ) : I --> D ) )
10093, 99mpbird 247 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  -> 
( k  e.  I  |-> 
[_ M  /  m ]_ ( i  e.  N ,  j  e.  N  |->  ( (coe1 `  ( i m j ) ) `  k ) ) )  e.  ( D  ^m  I ) )
10164, 100eqeltrd 2701 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  -> 
(curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M )  e.  ( D  ^m  I
) )
102 fveq1 6190 . . . . . . . . . . 11  |-  ( f  =  (curry  ( x  e.  B ,  k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  (
i x j ) ) `  k ) ) ) `  M
)  ->  ( f `  n )  =  ( (curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M ) `  n ) )
103102adantl 482 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M ) )  ->  ( f `  n )  =  ( (curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M ) `  n ) )
104103adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  (
x  e.  B , 
k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) ) `  M ) )  /\  n  e.  I )  ->  ( f `  n
)  =  ( (curry  ( x  e.  B ,  k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e. 
dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) ) `  M ) `  n
) )
105 eqid 2622 . . . . . . . . . . . 12  |-  ( x  e.  B ,  k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  (
i x j ) ) `  k ) ) )  =  ( x  e.  B , 
k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) )
106 dmexg 7097 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  B  ->  dom  x  e.  _V )
107 dmexg 7097 . . . . . . . . . . . . . . . . 17  |-  ( dom  x  e.  _V  ->  dom 
dom  x  e.  _V )
108106, 107syl 17 . . . . . . . . . . . . . . . 16  |-  ( x  e.  B  ->  dom  dom  x  e.  _V )
109108, 108jca 554 . . . . . . . . . . . . . . 15  |-  ( x  e.  B  ->  ( dom  dom  x  e.  _V  /\ 
dom  dom  x  e.  _V ) )
110109ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  ( x  e.  B  /\  k  e.  I
) )  ->  ( dom  dom  x  e.  _V  /\ 
dom  dom  x  e.  _V ) )
111 mpt2exga 7246 . . . . . . . . . . . . . 14  |-  ( ( dom  dom  x  e.  _V  /\  dom  dom  x  e.  _V )  ->  (
i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) )  e.  _V )
112110, 111syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  ( x  e.  B  /\  k  e.  I
) )  ->  (
i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) )  e.  _V )
113112ralrimivva 2971 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  A. x  e.  B  A. k  e.  I  ( i  e.  dom  dom  x , 
j  e.  dom  dom  x  |->  ( (coe1 `  (
i x j ) ) `  k ) )  e.  _V )
11421adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  I  e.  _V )
11523adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  M  e.  B )
116 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  n  e.  I )
117105, 113, 114, 115, 116fvmpt2curryd 7397 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  (
(curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M ) `  n )  =  ( M ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) n ) )
118 df-decpmat 20568 . . . . . . . . . . . . . 14  |- decompPMat  =  ( x  e.  _V , 
k  e.  NN0  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  (
i x j ) ) `  k ) ) )
119118reseq1i 5392 . . . . . . . . . . . . 13  |-  ( decompPMat  |`  ( B  X.  I ) )  =  ( ( x  e.  _V ,  k  e.  NN0  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  (
i x j ) ) `  k ) ) )  |`  ( B  X.  I ) )
120 ssv 3625 . . . . . . . . . . . . . . . . 17  |-  B  C_  _V
121120a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  ->  B  C_ 
_V )
122 simpl 473 . . . . . . . . . . . . . . . 16  |-  ( ( I  C_  NN0  /\  I  =/=  (/) )  ->  I  C_ 
NN0 )
123121, 122anim12i 590 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  -> 
( B  C_  _V  /\  I  C_  NN0 ) )
124123adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( B  C_  _V  /\  I  C_ 
NN0 ) )
125 resmpt2 6758 . . . . . . . . . . . . . 14  |-  ( ( B  C_  _V  /\  I  C_ 
NN0 )  ->  (
( x  e.  _V ,  k  e.  NN0  |->  ( i  e.  dom  dom  x ,  j  e. 
dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) )  |`  ( B  X.  I
) )  =  ( x  e.  B , 
k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) ) )
126124, 125syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  (
( x  e.  _V ,  k  e.  NN0  |->  ( i  e.  dom  dom  x ,  j  e. 
dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) )  |`  ( B  X.  I
) )  =  ( x  e.  B , 
k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) ) )
127119, 126syl5req 2669 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  (
x  e.  B , 
k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) )  =  ( decompPMat  |`  ( B  X.  I ) ) )
128127oveqd 6667 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( M ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) n )  =  ( M ( decompPMat  |`  ( B  X.  I ) ) n ) )
129117, 128eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  (
(curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M ) `  n )  =  ( M ( decompPMat  |`  ( B  X.  I ) ) n ) )
130129adantlr 751 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  (
x  e.  B , 
k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) ) `  M ) )  /\  n  e.  I )  ->  ( (curry  ( x  e.  B ,  k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  (
i x j ) ) `  k ) ) ) `  M
) `  n )  =  ( M ( decompPMat  |`  ( B  X.  I
) ) n ) )
131104, 130eqtrd 2656 . . . . . . . 8  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  (
x  e.  B , 
k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) ) `  M ) )  /\  n  e.  I )  ->  ( f `  n
)  =  ( M ( decompPMat  |`  ( B  X.  I ) ) n ) )
132131fveq2d 6195 . . . . . . 7  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  (
x  e.  B , 
k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) ) `  M ) )  /\  n  e.  I )  ->  ( T `  (
f `  n )
)  =  ( T `
 ( M ( decompPMat  |`  ( B  X.  I
) ) n ) ) )
13322ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M ) )  ->  M  e.  B
)
134 ovres 6800 . . . . . . . . 9  |-  ( ( M  e.  B  /\  n  e.  I )  ->  ( M ( decompPMat  |`  ( B  X.  I ) ) n )  =  ( M decompPMat  n ) )
135133, 134sylan 488 . . . . . . . 8  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  (
x  e.  B , 
k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) ) `  M ) )  /\  n  e.  I )  ->  ( M ( decompPMat  |`  ( B  X.  I ) ) n )  =  ( M decompPMat  n ) )
136135fveq2d 6195 . . . . . . 7  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  (
x  e.  B , 
k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) ) `  M ) )  /\  n  e.  I )  ->  ( T `  ( M ( decompPMat  |`  ( B  X.  I ) ) n ) )  =  ( T `  ( M decompPMat  n ) ) )
137132, 136eqtrd 2656 . . . . . 6  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  (
x  e.  B , 
k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) ) `  M ) )  /\  n  e.  I )  ->  ( T `  (
f `  n )
)  =  ( T `
 ( M decompPMat  n ) ) )
138137oveq2d 6666 . . . . 5  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  (
x  e.  B , 
k  e.  I  |->  ( i  e.  dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k
) ) ) `  M ) )  /\  n  e.  I )  ->  ( ( n  .^  X )  .*  ( T `  ( f `  n ) ) )  =  ( ( n 
.^  X )  .*  ( T `  ( M decompPMat  n ) ) ) )
139138mpteq2dva 4744 . . . 4  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M ) )  ->  ( n  e.  I  |->  ( ( n 
.^  X )  .*  ( T `  (
f `  n )
) ) )  =  ( n  e.  I  |->  ( ( n  .^  X )  .*  ( T `  ( M decompPMat  n ) ) ) ) )
140139oveq2d 6666 . . 3  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M ) )  ->  ( C  gsumg  ( n  e.  I  |->  ( ( n  .^  X )  .*  ( T `  (
f `  n )
) ) ) )  =  ( C  gsumg  ( n  e.  I  |->  ( ( n  .^  X )  .*  ( T `  ( M decompPMat  n ) ) ) ) ) )
141140eqeq2d 2632 . 2  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing  /\  M  e.  B
)  /\  ( I  C_ 
NN0  /\  I  =/=  (/) ) )  /\  f  =  (curry  ( x  e.  B ,  k  e.  I  |->  ( i  e. 
dom  dom  x ,  j  e.  dom  dom  x  |->  ( (coe1 `  ( i x j ) ) `  k ) ) ) `
 M ) )  ->  ( M  =  ( C  gsumg  ( n  e.  I  |->  ( ( n  .^  X )  .*  ( T `  ( f `  n ) ) ) ) )  <->  M  =  ( C  gsumg  ( n  e.  I  |->  ( ( n  .^  X )  .*  ( T `  ( M decompPMat  n ) ) ) ) ) ) )
142101, 141rspcedv 3313 1  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing  /\  M  e.  B )  /\  (
I  C_  NN0  /\  I  =/=  (/) ) )  -> 
( M  =  ( C  gsumg  ( n  e.  I  |->  ( ( n  .^  X )  .*  ( T `  ( M decompPMat  n ) ) ) ) )  ->  E. f  e.  ( D  ^m  I
) M  =  ( C  gsumg  ( n  e.  I  |->  ( ( n  .^  X )  .*  ( T `  ( f `  n ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200   [_csb 3533    C_ wss 3574   (/)c0 3915    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652  curry ccur 7391    ^m cmap 7857   Fincfn 7955   NN0cn0 11292   Basecbs 15857   .scvsca 15945    gsumg cgsu 16101  .gcmg 17540  mulGrpcmgp 18489   CRingccrg 18548  var1cv1 19546  Poly1cpl1 19547  coe1cco1 19548   Mat cmat 20213   matToPolyMat cmat2pmat 20509   decompPMat cdecpmat 20567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-cur 7393  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-psr 19356  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-coe1 19553  df-dsmm 20076  df-frlm 20091  df-mat 20214  df-decpmat 20568
This theorem is referenced by:  pmatcollpw3  20589  pmatcollpw3fi  20590
  Copyright terms: Public domain W3C validator