| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 ∈ 𝒫 𝑋) |
| 2 | | psmeasure.h |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) |
| 3 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝑋) → 𝐻:𝑋⟶(0[,]+∞)) |
| 4 | 1 | elpwid 4170 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 ⊆ 𝑋) |
| 5 | | fssres 6070 |
. . . . . . . 8
⊢ ((𝐻:𝑋⟶(0[,]+∞) ∧ 𝑥 ⊆ 𝑋) → (𝐻 ↾ 𝑥):𝑥⟶(0[,]+∞)) |
| 6 | 3, 4, 5 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝑋) → (𝐻 ↾ 𝑥):𝑥⟶(0[,]+∞)) |
| 7 | 1, 6 | sge0cl 40598 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝑋) →
(Σ^‘(𝐻 ↾ 𝑥)) ∈ (0[,]+∞)) |
| 8 | | psmeasure.m |
. . . . . 6
⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦
(Σ^‘(𝐻 ↾ 𝑥))) |
| 9 | 7, 8 | fmptd 6385 |
. . . . 5
⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) |
| 10 | 8, 7 | dmmptd 6024 |
. . . . . 6
⊢ (𝜑 → dom 𝑀 = 𝒫 𝑋) |
| 11 | 10 | feq2d 6031 |
. . . . 5
⊢ (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ↔ 𝑀:𝒫 𝑋⟶(0[,]+∞))) |
| 12 | 9, 11 | mpbird 247 |
. . . 4
⊢ (𝜑 → 𝑀:dom 𝑀⟶(0[,]+∞)) |
| 13 | | psmeasure.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 14 | | pwsal 40535 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ SAlg) |
| 15 | 13, 14 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝒫 𝑋 ∈ SAlg) |
| 16 | 10, 15 | eqeltrd 2701 |
. . . 4
⊢ (𝜑 → dom 𝑀 ∈ SAlg) |
| 17 | 12, 16 | jca 554 |
. . 3
⊢ (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg)) |
| 18 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦
(Σ^‘(𝐻 ↾ 𝑥)))) |
| 19 | | reseq2 5391 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐻 ↾ 𝑥) = (𝐻 ↾ ∅)) |
| 20 | 19 | fveq2d 6195 |
. . . . . 6
⊢ (𝑥 = ∅ →
(Σ^‘(𝐻 ↾ 𝑥)) =
(Σ^‘(𝐻 ↾ ∅))) |
| 21 | 20 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = ∅) →
(Σ^‘(𝐻 ↾ 𝑥)) =
(Σ^‘(𝐻 ↾ ∅))) |
| 22 | | 0elpw 4834 |
. . . . . 6
⊢ ∅
∈ 𝒫 𝑋 |
| 23 | 22 | a1i 11 |
. . . . 5
⊢ (𝜑 → ∅ ∈ 𝒫
𝑋) |
| 24 | | fvexd 6203 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝐻 ↾ ∅)) ∈
V) |
| 25 | 18, 21, 23, 24 | fvmptd 6288 |
. . . 4
⊢ (𝜑 → (𝑀‘∅) =
(Σ^‘(𝐻 ↾ ∅))) |
| 26 | | res0 5400 |
. . . . . . 7
⊢ (𝐻 ↾ ∅) =
∅ |
| 27 | 26 | fveq2i 6194 |
. . . . . 6
⊢
(Σ^‘(𝐻 ↾ ∅)) =
(Σ^‘∅) |
| 28 | | sge00 40593 |
. . . . . 6
⊢
(Σ^‘∅) = 0 |
| 29 | 27, 28 | eqtri 2644 |
. . . . 5
⊢
(Σ^‘(𝐻 ↾ ∅)) = 0 |
| 30 | 29 | a1i 11 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝐻 ↾ ∅)) = 0) |
| 31 | 25, 30 | eqtrd 2656 |
. . 3
⊢ (𝜑 → (𝑀‘∅) = 0) |
| 32 | | simpl 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 dom 𝑀) → 𝜑) |
| 33 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 dom 𝑀) → 𝑦 ∈ 𝒫 dom 𝑀) |
| 34 | 10 | pweqd 4163 |
. . . . . . . 8
⊢ (𝜑 → 𝒫 dom 𝑀 = 𝒫 𝒫 𝑋) |
| 35 | 34 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 dom 𝑀) → 𝒫 dom 𝑀 = 𝒫 𝒫 𝑋) |
| 36 | 33, 35 | eleqtrd 2703 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 dom 𝑀) → 𝑦 ∈ 𝒫 𝒫 𝑋) |
| 37 | | elpwi 4168 |
. . . . . 6
⊢ (𝑦 ∈ 𝒫 𝒫
𝑋 → 𝑦 ⊆ 𝒫 𝑋) |
| 38 | 36, 37 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 dom 𝑀) → 𝑦 ⊆ 𝒫 𝑋) |
| 39 | 13 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤 ∈ 𝑦 𝑤) → 𝑋 ∈ 𝑉) |
| 40 | 2 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤 ∈ 𝑦 𝑤) → 𝐻:𝑋⟶(0[,]+∞)) |
| 41 | 9 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤 ∈ 𝑦 𝑤) → 𝑀:𝒫 𝑋⟶(0[,]+∞)) |
| 42 | | simplr 792 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤 ∈ 𝑦 𝑤) → 𝑦 ⊆ 𝒫 𝑋) |
| 43 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → 𝑤 = 𝑧) |
| 44 | 43 | cbvdisjv 4631 |
. . . . . . . . . 10
⊢
(Disj 𝑤
∈ 𝑦 𝑤 ↔ Disj 𝑧 ∈ 𝑦 𝑧) |
| 45 | 44 | biimpi 206 |
. . . . . . . . 9
⊢
(Disj 𝑤
∈ 𝑦 𝑤 → Disj 𝑧 ∈ 𝑦 𝑧) |
| 46 | 45 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤 ∈ 𝑦 𝑤) → Disj 𝑧 ∈ 𝑦 𝑧) |
| 47 | 39, 40, 8, 41, 42, 46 | psmeasurelem 40687 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑀‘∪ 𝑦) =
(Σ^‘(𝑀 ↾ 𝑦))) |
| 48 | 47 | adantrl 752 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋) ∧ (𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤)) → (𝑀‘∪ 𝑦) =
(Σ^‘(𝑀 ↾ 𝑦))) |
| 49 | 48 | ex 450 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋) → ((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑀‘∪ 𝑦) =
(Σ^‘(𝑀 ↾ 𝑦)))) |
| 50 | 32, 38, 49 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 dom 𝑀) → ((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑀‘∪ 𝑦) =
(Σ^‘(𝑀 ↾ 𝑦)))) |
| 51 | 50 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑀‘∪ 𝑦) =
(Σ^‘(𝑀 ↾ 𝑦)))) |
| 52 | 17, 31, 51 | jca31 557 |
. 2
⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧
∀𝑦 ∈ 𝒫
dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑀‘∪ 𝑦) =
(Σ^‘(𝑀 ↾ 𝑦))))) |
| 53 | | ismea 40668 |
. 2
⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧
∀𝑦 ∈ 𝒫
dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑀‘∪ 𝑦) =
(Σ^‘(𝑀 ↾ 𝑦))))) |
| 54 | 52, 53 | sylibr 224 |
1
⊢ (𝜑 → 𝑀 ∈ Meas) |