Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psmeasure Structured version   Visualization version   Unicode version

Theorem psmeasure 40688
Description: Point supported measure, Remark 112B (d) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
psmeasure.x  |-  ( ph  ->  X  e.  V )
psmeasure.h  |-  ( ph  ->  H : X --> ( 0 [,] +oo ) )
psmeasure.m  |-  M  =  ( x  e.  ~P X  |->  (Σ^ `  ( H  |`  x
) ) )
Assertion
Ref Expression
psmeasure  |-  ( ph  ->  M  e. Meas )
Distinct variable groups:    x, H    x, X    ph, x
Allowed substitution hints:    M( x)    V( x)

Proof of Theorem psmeasure
Dummy variables  z 
y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  ~P X )  ->  x  e.  ~P X )
2 psmeasure.h . . . . . . . . 9  |-  ( ph  ->  H : X --> ( 0 [,] +oo ) )
32adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ~P X )  ->  H : X --> ( 0 [,] +oo ) )
41elpwid 4170 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ~P X )  ->  x  C_  X )
5 fssres 6070 . . . . . . . 8  |-  ( ( H : X --> ( 0 [,] +oo )  /\  x  C_  X )  -> 
( H  |`  x
) : x --> ( 0 [,] +oo ) )
63, 4, 5syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  x  e.  ~P X )  ->  ( H  |`  x ) : x --> ( 0 [,] +oo ) )
71, 6sge0cl 40598 . . . . . 6  |-  ( (
ph  /\  x  e.  ~P X )  ->  (Σ^ `  ( H  |`  x ) )  e.  ( 0 [,] +oo ) )
8 psmeasure.m . . . . . 6  |-  M  =  ( x  e.  ~P X  |->  (Σ^ `  ( H  |`  x
) ) )
97, 8fmptd 6385 . . . . 5  |-  ( ph  ->  M : ~P X --> ( 0 [,] +oo ) )
108, 7dmmptd 6024 . . . . . 6  |-  ( ph  ->  dom  M  =  ~P X )
1110feq2d 6031 . . . . 5  |-  ( ph  ->  ( M : dom  M --> ( 0 [,] +oo ) 
<->  M : ~P X --> ( 0 [,] +oo ) ) )
129, 11mpbird 247 . . . 4  |-  ( ph  ->  M : dom  M --> ( 0 [,] +oo ) )
13 psmeasure.x . . . . . 6  |-  ( ph  ->  X  e.  V )
14 pwsal 40535 . . . . . 6  |-  ( X  e.  V  ->  ~P X  e. SAlg )
1513, 14syl 17 . . . . 5  |-  ( ph  ->  ~P X  e. SAlg )
1610, 15eqeltrd 2701 . . . 4  |-  ( ph  ->  dom  M  e. SAlg )
1712, 16jca 554 . . 3  |-  ( ph  ->  ( M : dom  M --> ( 0 [,] +oo )  /\  dom  M  e. SAlg
) )
188a1i 11 . . . . 5  |-  ( ph  ->  M  =  ( x  e.  ~P X  |->  (Σ^ `  ( H  |`  x ) ) ) )
19 reseq2 5391 . . . . . . 7  |-  ( x  =  (/)  ->  ( H  |`  x )  =  ( H  |`  (/) ) )
2019fveq2d 6195 . . . . . 6  |-  ( x  =  (/)  ->  (Σ^ `  ( H  |`  x
) )  =  (Σ^ `  ( H  |`  (/) ) ) )
2120adantl 482 . . . . 5  |-  ( (
ph  /\  x  =  (/) )  ->  (Σ^ `  ( H  |`  x
) )  =  (Σ^ `  ( H  |`  (/) ) ) )
22 0elpw 4834 . . . . . 6  |-  (/)  e.  ~P X
2322a1i 11 . . . . 5  |-  ( ph  -> 
(/)  e.  ~P X
)
24 fvexd 6203 . . . . 5  |-  ( ph  ->  (Σ^ `  ( H  |`  (/) ) )  e.  _V )
2518, 21, 23, 24fvmptd 6288 . . . 4  |-  ( ph  ->  ( M `  (/) )  =  (Σ^ `  ( H  |`  (/) ) ) )
26 res0 5400 . . . . . . 7  |-  ( H  |`  (/) )  =  (/)
2726fveq2i 6194 . . . . . 6  |-  (Σ^ `  ( H  |`  (/) ) )  =  (Σ^ `  (/) )
28 sge00 40593 . . . . . 6  |-  (Σ^ `  (/) )  =  0
2927, 28eqtri 2644 . . . . 5  |-  (Σ^ `  ( H  |`  (/) ) )  =  0
3029a1i 11 . . . 4  |-  ( ph  ->  (Σ^ `  ( H  |`  (/) ) )  =  0 )
3125, 30eqtrd 2656 . . 3  |-  ( ph  ->  ( M `  (/) )  =  0 )
32 simpl 473 . . . . 5  |-  ( (
ph  /\  y  e.  ~P dom  M )  ->  ph )
33 simpr 477 . . . . . . 7  |-  ( (
ph  /\  y  e.  ~P dom  M )  -> 
y  e.  ~P dom  M )
3410pweqd 4163 . . . . . . . 8  |-  ( ph  ->  ~P dom  M  =  ~P ~P X )
3534adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  ~P dom  M )  ->  ~P dom  M  =  ~P ~P X )
3633, 35eleqtrd 2703 . . . . . 6  |-  ( (
ph  /\  y  e.  ~P dom  M )  -> 
y  e.  ~P ~P X )
37 elpwi 4168 . . . . . 6  |-  ( y  e.  ~P ~P X  ->  y  C_  ~P X
)
3836, 37syl 17 . . . . 5  |-  ( (
ph  /\  y  e.  ~P dom  M )  -> 
y  C_  ~P X
)
3913ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_ 
~P X )  /\ Disj  w  e.  y  w )  ->  X  e.  V
)
402ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_ 
~P X )  /\ Disj  w  e.  y  w )  ->  H : X --> ( 0 [,] +oo ) )
419ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_ 
~P X )  /\ Disj  w  e.  y  w )  ->  M : ~P X
--> ( 0 [,] +oo ) )
42 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_ 
~P X )  /\ Disj  w  e.  y  w )  ->  y  C_  ~P X )
43 id 22 . . . . . . . . . . 11  |-  ( w  =  z  ->  w  =  z )
4443cbvdisjv 4631 . . . . . . . . . 10  |-  (Disj  w  e.  y  w  <-> Disj  z  e.  y  z )
4544biimpi 206 . . . . . . . . 9  |-  (Disj  w  e.  y  w  -> Disj  z  e.  y  z )
4645adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  y  C_ 
~P X )  /\ Disj  w  e.  y  w )  -> Disj  z  e.  y  z )
4739, 40, 8, 41, 42, 46psmeasurelem 40687 . . . . . . 7  |-  ( ( ( ph  /\  y  C_ 
~P X )  /\ Disj  w  e.  y  w )  ->  ( M `  U. y )  =  (Σ^ `  ( M  |`  y ) ) )
4847adantrl 752 . . . . . 6  |-  ( ( ( ph  /\  y  C_ 
~P X )  /\  ( y  ~<_  om  /\ Disj  w  e.  y  w ) )  ->  ( M `  U. y )  =  (Σ^ `  ( M  |`  y
) ) )
4948ex 450 . . . . 5  |-  ( (
ph  /\  y  C_  ~P X )  ->  (
( y  ~<_  om  /\ Disj  w  e.  y  w )  ->  ( M `  U. y )  =  (Σ^ `  ( M  |`  y ) ) ) )
5032, 38, 49syl2anc 693 . . . 4  |-  ( (
ph  /\  y  e.  ~P dom  M )  -> 
( ( y  ~<_  om 
/\ Disj  w  e.  y  w )  ->  ( M `  U. y )  =  (Σ^ `  ( M  |`  y
) ) ) )
5150ralrimiva 2966 . . 3  |-  ( ph  ->  A. y  e.  ~P  dom  M ( ( y  ~<_  om  /\ Disj  w  e.  y  w )  ->  ( M `  U. y )  =  (Σ^ `  ( M  |`  y
) ) ) )
5217, 31, 51jca31 557 . 2  |-  ( ph  ->  ( ( ( M : dom  M --> ( 0 [,] +oo )  /\  dom  M  e. SAlg )  /\  ( M `  (/) )  =  0 )  /\  A. y  e.  ~P  dom  M
( ( y  ~<_  om 
/\ Disj  w  e.  y  w )  ->  ( M `  U. y )  =  (Σ^ `  ( M  |`  y
) ) ) ) )
53 ismea 40668 . 2  |-  ( M  e. Meas 
<->  ( ( ( M : dom  M --> ( 0 [,] +oo )  /\  dom  M  e. SAlg )  /\  ( M `  (/) )  =  0 )  /\  A. y  e.  ~P  dom  M
( ( y  ~<_  om 
/\ Disj  w  e.  y  w )  ->  ( M `  U. y )  =  (Σ^ `  ( M  |`  y
) ) ) ) )
5452, 53sylibr 224 1  |-  ( ph  ->  M  e. Meas )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436  Disj wdisj 4620   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953   0cc0 9936   +oocpnf 10071   [,]cicc 12178  SAlgcsalg 40528  Σ^csumge0 40579  Meascmea 40666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-salg 40529  df-sumge0 40580  df-mea 40667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator