MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfaddlem Structured version   Visualization version   GIF version

Theorem mbfaddlem 23427
Description: The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
mbfadd.1 (𝜑𝐹 ∈ MblFn)
mbfadd.2 (𝜑𝐺 ∈ MblFn)
mbfadd.3 (𝜑𝐹:𝐴⟶ℝ)
mbfadd.4 (𝜑𝐺:𝐴⟶ℝ)
Assertion
Ref Expression
mbfaddlem (𝜑 → (𝐹𝑓 + 𝐺) ∈ MblFn)

Proof of Theorem mbfaddlem
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 readdcl 10019 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
21adantl 482 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
3 mbfadd.3 . . 3 (𝜑𝐹:𝐴⟶ℝ)
4 mbfadd.4 . . 3 (𝜑𝐺:𝐴⟶ℝ)
5 fdm 6051 . . . . 5 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
63, 5syl 17 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
7 mbfadd.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
8 mbfdm 23395 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
97, 8syl 17 . . . 4 (𝜑 → dom 𝐹 ∈ dom vol)
106, 9eqeltrrd 2702 . . 3 (𝜑𝐴 ∈ dom vol)
11 inidm 3822 . . 3 (𝐴𝐴) = 𝐴
122, 3, 4, 10, 10, 11off 6912 . 2 (𝜑 → (𝐹𝑓 + 𝐺):𝐴⟶ℝ)
13 eliun 4524 . . . . 5 (𝑥 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))))
14 r19.42v 3092 . . . . . . 7 (∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
15 simplr 792 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
164adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐺:𝐴⟶ℝ)
1716ffvelrnda 6359 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℝ)
183adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹:𝐴⟶ℝ)
1918ffvelrnda 6359 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
2015, 17, 19ltsubaddd 10623 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) ↔ 𝑦 < ((𝐹𝑥) + (𝐺𝑥))))
2115adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑦 ∈ ℝ)
22 qre 11793 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℚ → 𝑟 ∈ ℝ)
2322adantl 482 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑟 ∈ ℝ)
2417adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝐺𝑥) ∈ ℝ)
25 ltsub23 10508 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → ((𝑦𝑟) < (𝐺𝑥) ↔ (𝑦 − (𝐺𝑥)) < 𝑟))
2621, 23, 24, 25syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑦𝑟) < (𝐺𝑥) ↔ (𝑦 − (𝐺𝑥)) < 𝑟))
2726anbi2d 740 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ (𝑟 < (𝐹𝑥) ∧ (𝑦 − (𝐺𝑥)) < 𝑟)))
28 ancom 466 . . . . . . . . . . . . 13 ((𝑟 < (𝐹𝑥) ∧ (𝑦 − (𝐺𝑥)) < 𝑟) ↔ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)))
2927, 28syl6bb 276 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
3029rexbidva 3049 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
3115, 17resubcld 10458 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 − (𝐺𝑥)) ∈ ℝ)
3231adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦 − (𝐺𝑥)) ∈ ℝ)
3319adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝐹𝑥) ∈ ℝ)
34 lttr 10114 . . . . . . . . . . . . . 14 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3532, 23, 33, 34syl3anc 1326 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
3635rexlimdva 3031 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) → (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
37 qbtwnre 12030 . . . . . . . . . . . . . 14 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)))
38373expia 1267 . . . . . . . . . . . . 13 (((𝑦 − (𝐺𝑥)) ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
3931, 19, 38syl2anc 693 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦 − (𝐺𝑥)) < (𝐹𝑥) → ∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥))))
4036, 39impbid 202 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝑦 − (𝐺𝑥)) < 𝑟𝑟 < (𝐹𝑥)) ↔ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
4130, 40bitrd 268 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ (𝑦 − (𝐺𝑥)) < (𝐹𝑥)))
42 ffn 6045 . . . . . . . . . . . . . 14 (𝐹:𝐴⟶ℝ → 𝐹 Fn 𝐴)
433, 42syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝐴)
4443adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹 Fn 𝐴)
45 ffn 6045 . . . . . . . . . . . . . 14 (𝐺:𝐴⟶ℝ → 𝐺 Fn 𝐴)
464, 45syl 17 . . . . . . . . . . . . 13 (𝜑𝐺 Fn 𝐴)
4746adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐺 Fn 𝐴)
4810adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ dom vol)
49 eqidd 2623 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
50 eqidd 2623 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
5144, 47, 48, 48, 11, 49, 50ofval 6906 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝑓 + 𝐺)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
5251breq2d 4665 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥) ↔ 𝑦 < ((𝐹𝑥) + (𝐺𝑥))))
5320, 41, 523bitr4d 300 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥)) ↔ 𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥)))
5423rexrd 10089 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → 𝑟 ∈ ℝ*)
55 elioopnf 12267 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ* → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑟 < (𝐹𝑥))))
5654, 55syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑟 < (𝐹𝑥))))
5733biantrurd 529 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑟 < (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑟 < (𝐹𝑥))))
5856, 57bitr4d 271 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐹𝑥) ∈ (𝑟(,)+∞) ↔ 𝑟 < (𝐹𝑥)))
5921, 23resubcld 10458 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦𝑟) ∈ ℝ)
6059rexrd 10089 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (𝑦𝑟) ∈ ℝ*)
61 elioopnf 12267 . . . . . . . . . . . . 13 ((𝑦𝑟) ∈ ℝ* → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ (𝑦𝑟) < (𝐺𝑥))))
6260, 61syl 17 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ ((𝐺𝑥) ∈ ℝ ∧ (𝑦𝑟) < (𝐺𝑥))))
6324biantrurd 529 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝑦𝑟) < (𝐺𝑥) ↔ ((𝐺𝑥) ∈ ℝ ∧ (𝑦𝑟) < (𝐺𝑥))))
6462, 63bitr4d 271 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → ((𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞) ↔ (𝑦𝑟) < (𝐺𝑥)))
6558, 64anbi12d 747 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑟 ∈ ℚ) → (((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥))))
6665rexbidva 3049 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ ∃𝑟 ∈ ℚ (𝑟 < (𝐹𝑥) ∧ (𝑦𝑟) < (𝐺𝑥))))
6715rexrd 10089 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
68 elioopnf 12267 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → (((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ (((𝐹𝑓 + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥))))
6967, 68syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ (((𝐹𝑓 + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥))))
7012adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑓 + 𝐺):𝐴⟶ℝ)
7170ffvelrnda 6359 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝑓 + 𝐺)‘𝑥) ∈ ℝ)
7271biantrurd 529 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥) ↔ (((𝐹𝑓 + 𝐺)‘𝑥) ∈ ℝ ∧ 𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥))))
7369, 72bitr4d 271 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞) ↔ 𝑦 < ((𝐹𝑓 + 𝐺)‘𝑥)))
7453, 66, 733bitr4d 300 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)) ↔ ((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞)))
7574pm5.32da 673 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ∧ ∃𝑟 ∈ ℚ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
7614, 75syl5bb 272 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
77 elpreima 6337 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞))))
7844, 77syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞))))
79 elpreima 6337 . . . . . . . . . 10 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
8047, 79syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞)) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
8178, 80anbi12d 747 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → ((𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ∧ 𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞)) ∧ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
82 elin 3796 . . . . . . . 8 (𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ (𝑥 ∈ (𝐹 “ (𝑟(,)+∞)) ∧ 𝑥 ∈ (𝐺 “ ((𝑦𝑟)(,)+∞))))
83 anandi 871 . . . . . . . 8 ((𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (𝑟(,)+∞)) ∧ (𝑥𝐴 ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞))))
8481, 82, 833bitr4g 303 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
8584rexbidv 3052 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ ∃𝑟 ∈ ℚ (𝑥𝐴 ∧ ((𝐹𝑥) ∈ (𝑟(,)+∞) ∧ (𝐺𝑥) ∈ ((𝑦𝑟)(,)+∞)))))
86 ffn 6045 . . . . . . . . 9 ((𝐹𝑓 + 𝐺):𝐴⟶ℝ → (𝐹𝑓 + 𝐺) Fn 𝐴)
8712, 86syl 17 . . . . . . . 8 (𝜑 → (𝐹𝑓 + 𝐺) Fn 𝐴)
8887adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑓 + 𝐺) Fn 𝐴)
89 elpreima 6337 . . . . . . 7 ((𝐹𝑓 + 𝐺) Fn 𝐴 → (𝑥 ∈ ((𝐹𝑓 + 𝐺) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
9088, 89syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑥 ∈ ((𝐹𝑓 + 𝐺) “ (𝑦(,)+∞)) ↔ (𝑥𝐴 ∧ ((𝐹𝑓 + 𝐺)‘𝑥) ∈ (𝑦(,)+∞))))
9176, 85, 903bitr4d 300 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∃𝑟 ∈ ℚ 𝑥 ∈ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ 𝑥 ∈ ((𝐹𝑓 + 𝐺) “ (𝑦(,)+∞))))
9213, 91syl5bb 272 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝑥 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ↔ 𝑥 ∈ ((𝐹𝑓 + 𝐺) “ (𝑦(,)+∞))))
9392eqrdv 2620 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) = ((𝐹𝑓 + 𝐺) “ (𝑦(,)+∞)))
94 qnnen 14942 . . . . 5 ℚ ≈ ℕ
95 endom 7982 . . . . 5 (ℚ ≈ ℕ → ℚ ≼ ℕ)
9694, 95ax-mp 5 . . . 4 ℚ ≼ ℕ
97 mbfima 23399 . . . . . . . 8 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑟(,)+∞)) ∈ dom vol)
987, 3, 97syl2anc 693 . . . . . . 7 (𝜑 → (𝐹 “ (𝑟(,)+∞)) ∈ dom vol)
99 mbfadd.2 . . . . . . . 8 (𝜑𝐺 ∈ MblFn)
100 mbfima 23399 . . . . . . . 8 ((𝐺 ∈ MblFn ∧ 𝐺:𝐴⟶ℝ) → (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol)
10199, 4, 100syl2anc 693 . . . . . . 7 (𝜑 → (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol)
102 inmbl 23310 . . . . . . 7 (((𝐹 “ (𝑟(,)+∞)) ∈ dom vol ∧ (𝐺 “ ((𝑦𝑟)(,)+∞)) ∈ dom vol) → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
10398, 101, 102syl2anc 693 . . . . . 6 (𝜑 → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
104103ad2antrr 762 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℚ) → ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
105104ralrimiva 2966 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
106 iunmbl2 23325 . . . 4 ((ℚ ≼ ℕ ∧ ∀𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
10796, 105, 106sylancr 695 . . 3 ((𝜑𝑦 ∈ ℝ) → 𝑟 ∈ ℚ ((𝐹 “ (𝑟(,)+∞)) ∩ (𝐺 “ ((𝑦𝑟)(,)+∞))) ∈ dom vol)
10893, 107eqeltrrd 2702 . 2 ((𝜑𝑦 ∈ ℝ) → ((𝐹𝑓 + 𝐺) “ (𝑦(,)+∞)) ∈ dom vol)
10912, 108ismbf3d 23421 1 (𝜑 → (𝐹𝑓 + 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cin 3573   ciun 4520   class class class wbr 4653  ccnv 5113  dom cdm 5114  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cen 7952  cdom 7953  cr 9935   + caddc 9939  +∞cpnf 10071  *cxr 10073   < clt 10074  cmin 10266  cn 11020  cq 11788  (,)cioo 12175  volcvol 23232  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388
This theorem is referenced by:  mbfadd  23428
  Copyright terms: Public domain W3C validator