MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlt1 Structured version   Visualization version   Unicode version

Theorem radcnvlt1 24172
Description: If  X is within the open disk of radius  R centered at zero, then the infinite series converges absolutely at  X, and also converges when the series is multiplied by  n. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
radcnv.a  |-  ( ph  ->  A : NN0 --> CC )
radcnv.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
radcnvlt.x  |-  ( ph  ->  X  e.  CC )
radcnvlt.a  |-  ( ph  ->  ( abs `  X
)  <  R )
radcnvlt1.h  |-  H  =  ( m  e.  NN0  |->  ( m  x.  ( abs `  ( ( G `
 X ) `  m ) ) ) )
Assertion
Ref Expression
radcnvlt1  |-  ( ph  ->  (  seq 0 (  +  ,  H )  e.  dom  ~~>  /\  seq 0 (  +  , 
( abs  o.  ( G `  X )
) )  e.  dom  ~~>  ) )
Distinct variable groups:    m, n, x, A    m, H    ph, m    m, X    m, r, G
Allowed substitution hints:    ph( x, n, r)    A( r)    R( x, m, n, r)    G( x, n)    H( x, n, r)    X( x, n, r)

Proof of Theorem radcnvlt1
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 radcnvlt.a . . . . 5  |-  ( ph  ->  ( abs `  X
)  <  R )
2 ressxr 10083 . . . . . . 7  |-  RR  C_  RR*
3 radcnvlt.x . . . . . . . 8  |-  ( ph  ->  X  e.  CC )
43abscld 14175 . . . . . . 7  |-  ( ph  ->  ( abs `  X
)  e.  RR )
52, 4sseldi 3601 . . . . . 6  |-  ( ph  ->  ( abs `  X
)  e.  RR* )
6 iccssxr 12256 . . . . . . 7  |-  ( 0 [,] +oo )  C_  RR*
7 pser.g . . . . . . . 8  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
8 radcnv.a . . . . . . . 8  |-  ( ph  ->  A : NN0 --> CC )
9 radcnv.r . . . . . . . 8  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
107, 8, 9radcnvcl 24171 . . . . . . 7  |-  ( ph  ->  R  e.  ( 0 [,] +oo ) )
116, 10sseldi 3601 . . . . . 6  |-  ( ph  ->  R  e.  RR* )
12 xrltnle 10105 . . . . . 6  |-  ( ( ( abs `  X
)  e.  RR*  /\  R  e.  RR* )  ->  (
( abs `  X
)  <  R  <->  -.  R  <_  ( abs `  X
) ) )
135, 11, 12syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( abs `  X
)  <  R  <->  -.  R  <_  ( abs `  X
) ) )
141, 13mpbid 222 . . . 4  |-  ( ph  ->  -.  R  <_  ( abs `  X ) )
159breq1i 4660 . . . . . 6  |-  ( R  <_  ( abs `  X
)  <->  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )  <_  ( abs `  X
) )
16 ssrab2 3687 . . . . . . . 8  |-  { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } 
C_  RR
1716, 2sstri 3612 . . . . . . 7  |-  { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } 
C_  RR*
18 supxrleub 12156 . . . . . . 7  |-  ( ( { r  e.  RR  |  seq 0 (  +  ,  ( G `  r ) )  e. 
dom 
~~>  }  C_  RR*  /\  ( abs `  X )  e. 
RR* )  ->  ( sup ( { r  e.  RR  |  seq 0
(  +  ,  ( G `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  )  <_ 
( abs `  X
)  <->  A. s  e.  {
r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } s  <_  ( abs `  X ) ) )
1917, 5, 18sylancr 695 . . . . . 6  |-  ( ph  ->  ( sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )  <_  ( abs `  X
)  <->  A. s  e.  {
r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } s  <_  ( abs `  X ) ) )
2015, 19syl5bb 272 . . . . 5  |-  ( ph  ->  ( R  <_  ( abs `  X )  <->  A. s  e.  { r  e.  RR  |  seq 0 (  +  ,  ( G `  r ) )  e. 
dom 
~~>  } s  <_  ( abs `  X ) ) )
21 fveq2 6191 . . . . . . . 8  |-  ( r  =  s  ->  ( G `  r )  =  ( G `  s ) )
2221seqeq3d 12809 . . . . . . 7  |-  ( r  =  s  ->  seq 0 (  +  , 
( G `  r
) )  =  seq 0 (  +  , 
( G `  s
) ) )
2322eleq1d 2686 . . . . . 6  |-  ( r  =  s  ->  (  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  <->  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  ) )
2423ralrab 3368 . . . . 5  |-  ( A. s  e.  { r  e.  RR  |  seq 0
(  +  ,  ( G `  r ) )  e.  dom  ~~>  } s  <_  ( abs `  X
)  <->  A. s  e.  RR  (  seq 0 (  +  ,  ( G `  s ) )  e. 
dom 
~~>  ->  s  <_  ( abs `  X ) ) )
2520, 24syl6bb 276 . . . 4  |-  ( ph  ->  ( R  <_  ( abs `  X )  <->  A. s  e.  RR  (  seq 0
(  +  ,  ( G `  s ) )  e.  dom  ~~>  ->  s  <_  ( abs `  X
) ) ) )
2614, 25mtbid 314 . . 3  |-  ( ph  ->  -.  A. s  e.  RR  (  seq 0
(  +  ,  ( G `  s ) )  e.  dom  ~~>  ->  s  <_  ( abs `  X
) ) )
27 rexanali 2998 . . 3  |-  ( E. s  e.  RR  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\ 
-.  s  <_  ( abs `  X ) )  <->  -.  A. s  e.  RR  (  seq 0 (  +  ,  ( G `  s ) )  e. 
dom 
~~>  ->  s  <_  ( abs `  X ) ) )
2826, 27sylibr 224 . 2  |-  ( ph  ->  E. s  e.  RR  (  seq 0 (  +  ,  ( G `  s ) )  e. 
dom 
~~>  /\  -.  s  <_ 
( abs `  X
) ) )
29 ltnle 10117 . . . . . . 7  |-  ( ( ( abs `  X
)  e.  RR  /\  s  e.  RR )  ->  ( ( abs `  X
)  <  s  <->  -.  s  <_  ( abs `  X
) ) )
304, 29sylan 488 . . . . . 6  |-  ( (
ph  /\  s  e.  RR )  ->  ( ( abs `  X )  <  s  <->  -.  s  <_  ( abs `  X
) ) )
3130adantr 481 . . . . 5  |-  ( ( ( ph  /\  s  e.  RR )  /\  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  )  ->  ( ( abs `  X )  <  s  <->  -.  s  <_  ( abs `  X ) ) )
328ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  A : NN0
--> CC )
333ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  X  e.  CC )
34 simplr 792 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  s  e.  RR )
3534recnd 10068 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  s  e.  CC )
36 simprr 796 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  ( abs `  X )  <  s
)
37 0red 10041 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  0  e.  RR )
3833abscld 14175 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  ( abs `  X )  e.  RR )
3933absge0d 14183 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  0  <_  ( abs `  X ) )
4037, 38, 34, 39, 36lelttrd 10195 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  0  <  s )
4137, 34, 40ltled 10185 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  0  <_  s )
4234, 41absidd 14161 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  ( abs `  s )  =  s )
4336, 42breqtrrd 4681 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  ( abs `  X )  <  ( abs `  s ) )
44 simprl 794 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  seq 0
(  +  ,  ( G `  s ) )  e.  dom  ~~>  )
45 radcnvlt1.h . . . . . . . 8  |-  H  =  ( m  e.  NN0  |->  ( m  x.  ( abs `  ( ( G `
 X ) `  m ) ) ) )
467, 32, 33, 35, 43, 44, 45radcnvlem1 24167 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  seq 0
(  +  ,  H
)  e.  dom  ~~>  )
477, 32, 33, 35, 43, 44radcnvlem2 24168 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  seq 0
(  +  ,  ( abs  o.  ( G `
 X ) ) )  e.  dom  ~~>  )
4846, 47jca 554 . . . . . 6  |-  ( ( ( ph  /\  s  e.  RR )  /\  (  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  /\  ( abs `  X
)  <  s )
)  ->  (  seq 0 (  +  ,  H )  e.  dom  ~~>  /\ 
seq 0 (  +  ,  ( abs  o.  ( G `  X ) ) )  e.  dom  ~~>  ) )
4948expr 643 . . . . 5  |-  ( ( ( ph  /\  s  e.  RR )  /\  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  )  ->  ( ( abs `  X )  <  s  ->  (  seq 0 (  +  ,  H )  e.  dom  ~~>  /\  seq 0 (  +  , 
( abs  o.  ( G `  X )
) )  e.  dom  ~~>  ) ) )
5031, 49sylbird 250 . . . 4  |-  ( ( ( ph  /\  s  e.  RR )  /\  seq 0 (  +  , 
( G `  s
) )  e.  dom  ~~>  )  ->  ( -.  s  <_  ( abs `  X
)  ->  (  seq 0 (  +  ,  H )  e.  dom  ~~>  /\ 
seq 0 (  +  ,  ( abs  o.  ( G `  X ) ) )  e.  dom  ~~>  ) ) )
5150expimpd 629 . . 3  |-  ( (
ph  /\  s  e.  RR )  ->  ( (  seq 0 (  +  ,  ( G `  s ) )  e. 
dom 
~~>  /\  -.  s  <_ 
( abs `  X
) )  ->  (  seq 0 (  +  ,  H )  e.  dom  ~~>  /\ 
seq 0 (  +  ,  ( abs  o.  ( G `  X ) ) )  e.  dom  ~~>  ) ) )
5251rexlimdva 3031 . 2  |-  ( ph  ->  ( E. s  e.  RR  (  seq 0
(  +  ,  ( G `  s ) )  e.  dom  ~~>  /\  -.  s  <_  ( abs `  X
) )  ->  (  seq 0 (  +  ,  H )  e.  dom  ~~>  /\ 
seq 0 (  +  ,  ( abs  o.  ( G `  X ) ) )  e.  dom  ~~>  ) ) )
5328, 52mpd 15 1  |-  ( ph  ->  (  seq 0 (  +  ,  H )  e.  dom  ~~>  /\  seq 0 (  +  , 
( abs  o.  ( G `  X )
) )  e.  dom  ~~>  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   NN0cn0 11292   [,]cicc 12178    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  radcnvlt2  24173  dvradcnv  24175  pserulm  24176
  Copyright terms: Public domain W3C validator