MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramz2 Structured version   Visualization version   GIF version

Theorem ramz2 15728
Description: The Ramsey number when 𝐹 has value zero for some color 𝐶. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ramz2 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) = 0)

Proof of Theorem ramz2
Dummy variables 𝑏 𝑓 𝑐 𝑠 𝑥 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
2 simpl1 1064 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝑀 ∈ ℕ)
32nnnn0d 11351 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝑀 ∈ ℕ0)
4 simpl2 1065 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝑅𝑉)
5 simpl3 1066 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 𝐹:𝑅⟶ℕ0)
6 0nn0 11307 . . . 4 0 ∈ ℕ0
76a1i 11 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → 0 ∈ ℕ0)
8 simplrl 800 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (#‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝐶𝑅)
9 0elpw 4834 . . . . 5 ∅ ∈ 𝒫 𝑠
109a1i 11 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (#‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∅ ∈ 𝒫 𝑠)
11 simplrr 801 . . . . 5 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (#‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝐹𝐶) = 0)
12 0le0 11110 . . . . 5 0 ≤ 0
1311, 12syl6eqbr 4692 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (#‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝐹𝐶) ≤ 0)
14 simpll1 1100 . . . . . 6 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (#‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑀 ∈ ℕ)
1510hashbc 15711 . . . . . 6 (𝑀 ∈ ℕ → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅)
1614, 15syl 17 . . . . 5 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (#‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅)
17 0ss 3972 . . . . 5 ∅ ⊆ (𝑓 “ {𝐶})
1816, 17syl6eqss 3655 . . . 4 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (#‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))
19 fveq2 6191 . . . . . . 7 (𝑐 = 𝐶 → (𝐹𝑐) = (𝐹𝐶))
2019breq1d 4663 . . . . . 6 (𝑐 = 𝐶 → ((𝐹𝑐) ≤ (#‘𝑥) ↔ (𝐹𝐶) ≤ (#‘𝑥)))
21 sneq 4187 . . . . . . . 8 (𝑐 = 𝐶 → {𝑐} = {𝐶})
2221imaeq2d 5466 . . . . . . 7 (𝑐 = 𝐶 → (𝑓 “ {𝑐}) = (𝑓 “ {𝐶}))
2322sseq2d 3633 . . . . . 6 (𝑐 = 𝐶 → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}) ↔ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶})))
2420, 23anbi12d 747 . . . . 5 (𝑐 = 𝐶 → (((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})) ↔ ((𝐹𝐶) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))))
25 fveq2 6191 . . . . . . . 8 (𝑥 = ∅ → (#‘𝑥) = (#‘∅))
26 hash0 13158 . . . . . . . 8 (#‘∅) = 0
2725, 26syl6eq 2672 . . . . . . 7 (𝑥 = ∅ → (#‘𝑥) = 0)
2827breq2d 4665 . . . . . 6 (𝑥 = ∅ → ((𝐹𝐶) ≤ (#‘𝑥) ↔ (𝐹𝐶) ≤ 0))
29 oveq1 6657 . . . . . . 7 (𝑥 = ∅ → (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀))
3029sseq1d 3632 . . . . . 6 (𝑥 = ∅ → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}) ↔ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶})))
3128, 30anbi12d 747 . . . . 5 (𝑥 = ∅ → (((𝐹𝐶) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶})) ↔ ((𝐹𝐶) ≤ 0 ∧ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))))
3224, 31rspc2ev 3324 . . . 4 ((𝐶𝑅 ∧ ∅ ∈ 𝒫 𝑠 ∧ ((𝐹𝐶) ≤ 0 ∧ (∅(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝐶}))) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
338, 10, 13, 18, 32syl112anc 1330 . . 3 ((((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) ∧ (0 ≤ (#‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
341, 3, 4, 5, 7, 33ramub 15717 . 2 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) ≤ 0)
35 ramubcl 15722 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (0 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 0)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
363, 4, 5, 7, 34, 35syl32anc 1334 . . 3 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
37 nn0le0eq0 11321 . . 3 ((𝑀 Ramsey 𝐹) ∈ ℕ0 → ((𝑀 Ramsey 𝐹) ≤ 0 ↔ (𝑀 Ramsey 𝐹) = 0))
3836, 37syl 17 . 2 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → ((𝑀 Ramsey 𝐹) ≤ 0 ↔ (𝑀 Ramsey 𝐹) = 0))
3934, 38mpbid 222 1 (((𝑀 ∈ ℕ ∧ 𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐶𝑅 ∧ (𝐹𝐶) = 0)) → (𝑀 Ramsey 𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  ccnv 5113  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  0cc0 9936  cle 10075  cn 11020  0cn0 11292  #chash 13117   Ramsey cram 15703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-fac 13061  df-bc 13090  df-hash 13118  df-ram 15705
This theorem is referenced by:  ramz  15729  ramcl  15733
  Copyright terms: Public domain W3C validator