| Step | Hyp | Ref
| Expression |
| 1 | | nn0ex 11298 |
. . . 4
⊢
ℕ0 ∈ V |
| 2 | | simpr 477 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ Fin) →
𝑅 ∈
Fin) |
| 3 | | elmapg 7870 |
. . . 4
⊢
((ℕ0 ∈ V ∧ 𝑅 ∈ Fin) → (𝐹 ∈ (ℕ0
↑𝑚 𝑅) ↔ 𝐹:𝑅⟶ℕ0)) |
| 4 | 1, 2, 3 | sylancr 695 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ Fin) →
(𝐹 ∈
(ℕ0 ↑𝑚 𝑅) ↔ 𝐹:𝑅⟶ℕ0)) |
| 5 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑥 Ramsey 𝑓) = (0 Ramsey 𝑓)) |
| 6 | 5 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑥 Ramsey 𝑓) ∈ ℕ0 ↔ (0 Ramsey
𝑓) ∈
ℕ0)) |
| 7 | 6 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑥 = 0 → (∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0 ↔
∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)(0 Ramsey 𝑓) ∈
ℕ0)) |
| 8 | 7 | imbi2d 330 |
. . . . . 6
⊢ (𝑥 = 0 → ((𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0) ↔ (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)(0 Ramsey 𝑓) ∈
ℕ0))) |
| 9 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑥 = 𝑚 → (𝑥 Ramsey 𝑓) = (𝑚 Ramsey 𝑓)) |
| 10 | 9 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑥 = 𝑚 → ((𝑥 Ramsey 𝑓) ∈ ℕ0 ↔ (𝑚 Ramsey 𝑓) ∈
ℕ0)) |
| 11 | 10 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑥 = 𝑚 → (∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0 ↔
∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑓) ∈
ℕ0)) |
| 12 | 11 | imbi2d 330 |
. . . . . 6
⊢ (𝑥 = 𝑚 → ((𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0) ↔ (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑓) ∈
ℕ0))) |
| 13 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑥 = (𝑚 + 1) → (𝑥 Ramsey 𝑓) = ((𝑚 + 1) Ramsey 𝑓)) |
| 14 | 13 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑥 = (𝑚 + 1) → ((𝑥 Ramsey 𝑓) ∈ ℕ0 ↔ ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 15 | 14 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑥 = (𝑚 + 1) → (∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0 ↔
∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 16 | 15 | imbi2d 330 |
. . . . . 6
⊢ (𝑥 = (𝑚 + 1) → ((𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0) ↔ (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0))) |
| 17 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → (𝑥 Ramsey 𝑓) = (𝑀 Ramsey 𝑓)) |
| 18 | 17 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → ((𝑥 Ramsey 𝑓) ∈ ℕ0 ↔ (𝑀 Ramsey 𝑓) ∈
ℕ0)) |
| 19 | 18 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0 ↔
∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)(𝑀 Ramsey 𝑓) ∈
ℕ0)) |
| 20 | 19 | imbi2d 330 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0) ↔ (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)(𝑀 Ramsey 𝑓) ∈
ℕ0))) |
| 21 | | elmapi 7879 |
. . . . . . . 8
⊢ (𝑓 ∈ (ℕ0
↑𝑚 𝑅) → 𝑓:𝑅⟶ℕ0) |
| 22 | | 0ramcl 15727 |
. . . . . . . 8
⊢ ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ0) → (0
Ramsey 𝑓) ∈
ℕ0) |
| 23 | 21, 22 | sylan2 491 |
. . . . . . 7
⊢ ((𝑅 ∈ Fin ∧ 𝑓 ∈ (ℕ0
↑𝑚 𝑅)) → (0 Ramsey 𝑓) ∈
ℕ0) |
| 24 | 23 | ralrimiva 2966 |
. . . . . 6
⊢ (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)(0 Ramsey 𝑓) ∈
ℕ0) |
| 25 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑚 Ramsey 𝑓) = (𝑚 Ramsey 𝑔)) |
| 26 | 25 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝑚 Ramsey 𝑓) ∈ ℕ0 ↔ (𝑚 Ramsey 𝑔) ∈
ℕ0)) |
| 27 | 26 | cbvralv 3171 |
. . . . . . . . 9
⊢
(∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑓) ∈ ℕ0 ↔
∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈
ℕ0) |
| 28 | | simpll 790 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (𝑓 ∈
(ℕ0 ↑𝑚 𝑅) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) → 𝑅 ∈ Fin) |
| 29 | 21 | ad2antrl 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (𝑓 ∈
(ℕ0 ↑𝑚 𝑅) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) → 𝑓:𝑅⟶ℕ0) |
| 30 | 29 | ffvelrnda 6359 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (𝑓 ∈
(ℕ0 ↑𝑚 𝑅) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) ∧ 𝑘 ∈ 𝑅) → (𝑓‘𝑘) ∈
ℕ0) |
| 31 | 28, 30 | fsumnn0cl 14467 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (𝑓 ∈
(ℕ0 ↑𝑚 𝑅) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) →
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) ∈
ℕ0) |
| 32 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 0 → (Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥 ↔ Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0)) |
| 33 | 32 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 0 → ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) ↔ (ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0))) |
| 34 | 33 | imbi1d 331 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 0 → (((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) ↔ ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 35 | 34 | albidv 1849 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 0 → (∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) ↔
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 36 | 35 | imbi2d 330 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 0 → ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ↔ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0)))) |
| 37 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑛 → (Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥 ↔ Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛)) |
| 38 | 37 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑛 → ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) ↔ (ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛))) |
| 39 | 38 | imbi1d 331 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑛 → (((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) ↔ ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 40 | 39 | albidv 1849 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑛 → (∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) ↔
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 41 | 40 | imbi2d 330 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑛 → ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧
∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ↔ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0)))) |
| 42 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑛 + 1) → (Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥 ↔ Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1))) |
| 43 | 42 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑛 + 1) → ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) ↔ (ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1)))) |
| 44 | 43 | imbi1d 331 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑛 + 1) → (((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) ↔ ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 45 | 44 | albidv 1849 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑛 + 1) → (∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) ↔
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 46 | 45 | imbi2d 330 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑛 + 1) → ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧
∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ↔ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0)))) |
| 47 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) → (Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥 ↔ Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘))) |
| 48 | 47 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) → ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) ↔ (ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)))) |
| 49 | 48 | imbi1d 331 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) → (((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) ↔ ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 50 | 49 | albidv 1849 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) → (∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) ↔
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 51 | 50 | imbi2d 330 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) → ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧
∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ↔ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0)))) |
| 52 | | simplll 798 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) → 𝑅 ∈ Fin) |
| 53 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ℎ:𝑅⟶ℕ0 ∧ 𝑘 ∈ 𝑅) → (ℎ‘𝑘) ∈
ℕ0) |
| 54 | 53 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) ∧ 𝑘 ∈ 𝑅) → (ℎ‘𝑘) ∈
ℕ0) |
| 55 | 54 | nn0red 11352 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) ∧ 𝑘 ∈ 𝑅) → (ℎ‘𝑘) ∈ ℝ) |
| 56 | 54 | nn0ge0d 11354 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) ∧ 𝑘 ∈ 𝑅) → 0 ≤ (ℎ‘𝑘)) |
| 57 | 52, 55, 56 | fsum00 14530 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) →
(Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0 ↔ ∀𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0)) |
| 58 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ‘𝑘) ∈ V |
| 59 | 58 | rgenw 2924 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
∀𝑘 ∈
𝑅 (ℎ‘𝑘) ∈ V |
| 60 | | mpteqb 6299 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑘 ∈
𝑅 (ℎ‘𝑘) ∈ V → ((𝑘 ∈ 𝑅 ↦ (ℎ‘𝑘)) = (𝑘 ∈ 𝑅 ↦ 0) ↔ ∀𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0)) |
| 61 | 59, 60 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ 𝑅 ↦ (ℎ‘𝑘)) = (𝑘 ∈ 𝑅 ↦ 0) ↔ ∀𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0) |
| 62 | 57, 61 | syl6bbr 278 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) →
(Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0 ↔ (𝑘 ∈ 𝑅 ↦ (ℎ‘𝑘)) = (𝑘 ∈ 𝑅 ↦ 0))) |
| 63 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) → ℎ:𝑅⟶ℕ0) |
| 64 | 63 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) → ℎ = (𝑘 ∈ 𝑅 ↦ (ℎ‘𝑘))) |
| 65 | | fconstmpt 5163 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑅 × {0}) = (𝑘 ∈ 𝑅 ↦ 0) |
| 66 | 65 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) → (𝑅 × {0}) = (𝑘 ∈ 𝑅 ↦ 0)) |
| 67 | 64, 66 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) → (ℎ = (𝑅 × {0}) ↔ (𝑘 ∈ 𝑅 ↦ (ℎ‘𝑘)) = (𝑘 ∈ 𝑅 ↦ 0))) |
| 68 | 62, 67 | bitr4d 271 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) →
(Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0 ↔ ℎ = (𝑅 × {0}))) |
| 69 | | xpeq1 5128 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑅 = ∅ → (𝑅 × {0}) = (∅ ×
{0})) |
| 70 | | 0xp 5199 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∅
× {0}) = ∅ |
| 71 | 69, 70 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑅 = ∅ → (𝑅 × {0}) =
∅) |
| 72 | 71 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑅 = ∅ → ((𝑚 + 1) Ramsey (𝑅 × {0})) = ((𝑚 + 1) Ramsey ∅)) |
| 73 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) → 𝑚 ∈
ℕ0) |
| 74 | | peano2nn0 11333 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ0) |
| 75 | 73, 74 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) → (𝑚 + 1) ∈
ℕ0) |
| 76 | | ram0 15726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑚 + 1) ∈ ℕ0
→ ((𝑚 + 1) Ramsey
∅) = (𝑚 +
1)) |
| 77 | 75, 76 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) → ((𝑚 + 1) Ramsey ∅) = (𝑚 + 1)) |
| 78 | 72, 77 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → ((𝑚 + 1) Ramsey (𝑅 × {0})) = (𝑚 + 1)) |
| 79 | 75 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (𝑚 + 1) ∈
ℕ0) |
| 80 | 78, 79 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) ∧ 𝑅 = ∅) → ((𝑚 + 1) Ramsey (𝑅 × {0})) ∈
ℕ0) |
| 81 | 75 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → (𝑚 + 1) ∈
ℕ0) |
| 82 | | simp-4l 806 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → 𝑅 ∈ Fin) |
| 83 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → 𝑅 ≠ ∅) |
| 84 | | ramz 15729 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑚 + 1) ∈ ℕ0
∧ 𝑅 ∈ Fin ∧
𝑅 ≠ ∅) →
((𝑚 + 1) Ramsey (𝑅 × {0})) =
0) |
| 85 | 81, 82, 83, 84 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → ((𝑚 + 1) Ramsey (𝑅 × {0})) = 0) |
| 86 | | 0nn0 11307 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℕ0 |
| 87 | 85, 86 | syl6eqel 2709 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → ((𝑚 + 1) Ramsey (𝑅 × {0})) ∈
ℕ0) |
| 88 | 80, 87 | pm2.61dane 2881 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) → ((𝑚 + 1) Ramsey (𝑅 × {0})) ∈
ℕ0) |
| 89 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = (𝑅 × {0}) → ((𝑚 + 1) Ramsey ℎ) = ((𝑚 + 1) Ramsey (𝑅 × {0}))) |
| 90 | 89 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = (𝑅 × {0}) → (((𝑚 + 1) Ramsey ℎ) ∈ ℕ0 ↔ ((𝑚 + 1) Ramsey (𝑅 × {0})) ∈
ℕ0)) |
| 91 | 88, 90 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) → (ℎ = (𝑅 × {0}) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0)) |
| 92 | 68, 91 | sylbid 230 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ ℎ:𝑅⟶ℕ0) →
(Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0 → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0)) |
| 93 | 92 | expimpd 629 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0)) |
| 94 | 93 | alrimiv 1855 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 0) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0)) |
| 95 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓:𝑅⟶ℕ0 → 𝑓 Fn 𝑅) |
| 96 | 95 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) → 𝑓 Fn 𝑅) |
| 97 | | ffnfv 6388 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓:𝑅⟶ℕ ↔ (𝑓 Fn 𝑅 ∧ ∀𝑥 ∈ 𝑅 (𝑓‘𝑥) ∈ ℕ)) |
| 98 | 97 | baib 944 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 Fn 𝑅 → (𝑓:𝑅⟶ℕ ↔ ∀𝑥 ∈ 𝑅 (𝑓‘𝑥) ∈ ℕ)) |
| 99 | 96, 98 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) → (𝑓:𝑅⟶ℕ ↔ ∀𝑥 ∈ 𝑅 (𝑓‘𝑥) ∈ ℕ)) |
| 100 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
→ 𝑚 ∈
ℕ0) |
| 101 | 100 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → 𝑚 ∈ ℕ0) |
| 102 | 101, 74 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (𝑚 + 1) ∈
ℕ0) |
| 103 | | simp-4l 806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → 𝑅 ∈ Fin) |
| 104 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → 𝑓:𝑅⟶ℕ) |
| 105 | | nnssnn0 11295 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ℕ
⊆ ℕ0 |
| 106 | | fss 6056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓:𝑅⟶ℕ ∧ ℕ ⊆
ℕ0) → 𝑓:𝑅⟶ℕ0) |
| 107 | 104, 105,
106 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → 𝑓:𝑅⟶ℕ0) |
| 108 | 101 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → 𝑚 ∈ ℂ) |
| 109 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 1 ∈
ℂ |
| 110 | | pncan 10287 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑚 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑚 + 1)
− 1) = 𝑚) |
| 111 | 108, 109,
110 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → ((𝑚 + 1) − 1) = 𝑚) |
| 112 | 111 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (((𝑚 + 1) − 1) Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))))) = (𝑚 Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))))) |
| 113 | 103 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → 𝑅 ∈ Fin) |
| 114 | | mptexg 6484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑅 ∈ Fin → (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) ∈ V) |
| 115 | 113, 114 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) ∈ V) |
| 116 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0)) |
| 117 | 104 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → (𝑓‘𝑥) ∈ ℕ) |
| 118 | | nnm1nn0 11334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑓‘𝑥) ∈ ℕ → ((𝑓‘𝑥) − 1) ∈
ℕ0) |
| 119 | 117, 118 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → ((𝑓‘𝑥) − 1) ∈
ℕ0) |
| 120 | 119 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) ∧ 𝑦 ∈ 𝑅) → ((𝑓‘𝑥) − 1) ∈
ℕ0) |
| 121 | 107 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → 𝑓:𝑅⟶ℕ0) |
| 122 | 121 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) ∧ 𝑦 ∈ 𝑅) → (𝑓‘𝑦) ∈
ℕ0) |
| 123 | 120, 122 | ifcld 4131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) ∧ 𝑦 ∈ 𝑅) → if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)) ∈
ℕ0) |
| 124 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) = (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) |
| 125 | 123, 124 | fmptd 6385 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))):𝑅⟶ℕ0) |
| 126 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → 𝑓:𝑅⟶ℕ) |
| 127 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ 𝑅) |
| 128 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝑓:𝑅⟶ℕ ∧ 𝑘 ∈ 𝑅) → (𝑓‘𝑘) ∈ ℕ) |
| 129 | 128 | 3ad2antl2 1224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) ∧ 𝑘 ∈ 𝑅) → (𝑓‘𝑘) ∈ ℕ) |
| 130 | 129 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) ∧ 𝑘 ∈ 𝑅) → (𝑓‘𝑘) ∈ ℂ) |
| 131 | 130 | subid1d 10381 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) ∧ 𝑘 ∈ 𝑅) → ((𝑓‘𝑘) − 0) = (𝑓‘𝑘)) |
| 132 | 131 | ifeq2d 4105 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) ∧ 𝑘 ∈ 𝑅) → if(𝑘 = 𝑥, ((𝑓‘𝑘) − 1), ((𝑓‘𝑘) − 0)) = if(𝑘 = 𝑥, ((𝑓‘𝑘) − 1), (𝑓‘𝑘))) |
| 133 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑘 = 𝑥 → (𝑓‘𝑘) = (𝑓‘𝑥)) |
| 134 | 133 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) ∧ 𝑘 ∈ 𝑅) ∧ 𝑘 = 𝑥) → (𝑓‘𝑘) = (𝑓‘𝑥)) |
| 135 | 134 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) ∧ 𝑘 ∈ 𝑅) ∧ 𝑘 = 𝑥) → ((𝑓‘𝑘) − 1) = ((𝑓‘𝑥) − 1)) |
| 136 | 135 | ifeq1da 4116 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) ∧ 𝑘 ∈ 𝑅) → if(𝑘 = 𝑥, ((𝑓‘𝑘) − 1), (𝑓‘𝑘)) = if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘))) |
| 137 | 132, 136 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) ∧ 𝑘 ∈ 𝑅) → if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘)) = if(𝑘 = 𝑥, ((𝑓‘𝑘) − 1), ((𝑓‘𝑘) − 0))) |
| 138 | | ovif2 6738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑓‘𝑘) − if(𝑘 = 𝑥, 1, 0)) = if(𝑘 = 𝑥, ((𝑓‘𝑘) − 1), ((𝑓‘𝑘) − 0)) |
| 139 | 137, 138 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) ∧ 𝑘 ∈ 𝑅) → if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘)) = ((𝑓‘𝑘) − if(𝑘 = 𝑥, 1, 0))) |
| 140 | 139 | sumeq2dv 14433 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) → Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘)) = Σ𝑘 ∈ 𝑅 ((𝑓‘𝑘) − if(𝑘 = 𝑥, 1, 0))) |
| 141 | | simp1 1061 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) → 𝑅 ∈ Fin) |
| 142 | | 0cn 10032 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ 0 ∈
ℂ |
| 143 | 109, 142 | keepel 4155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ if(𝑘 = 𝑥, 1, 0) ∈ ℂ |
| 144 | 143 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) ∧ 𝑘 ∈ 𝑅) → if(𝑘 = 𝑥, 1, 0) ∈ ℂ) |
| 145 | 141, 130,
144 | fsumsub 14520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) → Σ𝑘 ∈ 𝑅 ((𝑓‘𝑘) − if(𝑘 = 𝑥, 1, 0)) = (Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) − Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, 1, 0))) |
| 146 | | elsng 4191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑘 ∈ 𝑅 → (𝑘 ∈ {𝑥} ↔ 𝑘 = 𝑥)) |
| 147 | 146 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑘 ∈ 𝑅 → if(𝑘 ∈ {𝑥}, 1, 0) = if(𝑘 = 𝑥, 1, 0)) |
| 148 | 147 | sumeq2i 14429 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
Σ𝑘 ∈
𝑅 if(𝑘 ∈ {𝑥}, 1, 0) = Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, 1, 0) |
| 149 | | simp3 1063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ 𝑅) |
| 150 | 149 | snssd 4340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) → {𝑥} ⊆ 𝑅) |
| 151 | | sumhash 15600 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑅 ∈ Fin ∧ {𝑥} ⊆ 𝑅) → Σ𝑘 ∈ 𝑅 if(𝑘 ∈ {𝑥}, 1, 0) = (#‘{𝑥})) |
| 152 | 141, 150,
151 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) → Σ𝑘 ∈ 𝑅 if(𝑘 ∈ {𝑥}, 1, 0) = (#‘{𝑥})) |
| 153 | | hashsng 13159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑥 ∈ 𝑅 → (#‘{𝑥}) = 1) |
| 154 | 149, 153 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) → (#‘{𝑥}) = 1) |
| 155 | 152, 154 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) → Σ𝑘 ∈ 𝑅 if(𝑘 ∈ {𝑥}, 1, 0) = 1) |
| 156 | 148, 155 | syl5eqr 2670 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) → Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, 1, 0) = 1) |
| 157 | 156 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) → (Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) − Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, 1, 0)) = (Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) − 1)) |
| 158 | 140, 145,
157 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥 ∈ 𝑅) → Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘)) = (Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) − 1)) |
| 159 | 113, 126,
127, 158 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘)) = (Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) − 1)) |
| 160 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1)) |
| 161 | 160 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → (Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) − 1) = ((𝑛 + 1) − 1)) |
| 162 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) → 𝑛 ∈
ℕ0) |
| 163 | 162 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → 𝑛 ∈ ℕ0) |
| 164 | 163 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → 𝑛 ∈ ℂ) |
| 165 | | pncan 10287 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 + 1)
− 1) = 𝑛) |
| 166 | 164, 109,
165 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → ((𝑛 + 1) − 1) = 𝑛) |
| 167 | 159, 161,
166 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘)) = 𝑛) |
| 168 | 125, 167 | jca 554 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → ((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))):𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘)) = 𝑛)) |
| 169 | | feq1 6026 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (ℎ = (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) → (ℎ:𝑅⟶ℕ0 ↔ (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))):𝑅⟶ℕ0)) |
| 170 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (ℎ = (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) → (ℎ‘𝑘) = ((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))‘𝑘)) |
| 171 | | equequ1 1952 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑦 = 𝑘 → (𝑦 = 𝑥 ↔ 𝑘 = 𝑥)) |
| 172 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑦 = 𝑘 → (𝑓‘𝑦) = (𝑓‘𝑘)) |
| 173 | 171, 172 | ifbieq2d 4111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑦 = 𝑘 → if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)) = if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘))) |
| 174 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑓‘𝑥) − 1) ∈ V |
| 175 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑓‘𝑘) ∈ V |
| 176 | 174, 175 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘)) ∈ V |
| 177 | 173, 124,
176 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑘 ∈ 𝑅 → ((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))‘𝑘) = if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘))) |
| 178 | 170, 177 | sylan9eq 2676 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((ℎ = (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) ∧ 𝑘 ∈ 𝑅) → (ℎ‘𝑘) = if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘))) |
| 179 | 178 | sumeq2dv 14433 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (ℎ = (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) → Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘))) |
| 180 | 179 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (ℎ = (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) → (Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛 ↔ Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘)) = 𝑛)) |
| 181 | 169, 180 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (ℎ = (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) → ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) ↔ ((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))):𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘)) = 𝑛))) |
| 182 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (ℎ = (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) → ((𝑚 + 1) Ramsey ℎ) = ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))) |
| 183 | 182 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (ℎ = (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) → (((𝑚 + 1) Ramsey ℎ) ∈ ℕ0 ↔ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))) ∈
ℕ0)) |
| 184 | 181, 183 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ = (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) → (((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) ↔ (((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))):𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘)) = 𝑛) → ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))) ∈
ℕ0))) |
| 185 | 184 | spcgv 3293 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) ∈ V → (∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) → (((𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))):𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 if(𝑘 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑘)) = 𝑛) → ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))) ∈
ℕ0))) |
| 186 | 115, 116,
168, 185 | syl3c 66 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥 ∈ 𝑅) → ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))) ∈
ℕ0) |
| 187 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))) = (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))) |
| 188 | 186, 187 | fmptd 6385 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))):𝑅⟶ℕ0) |
| 189 | | elmapg 7870 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((ℕ0 ∈ V ∧ 𝑅 ∈ Fin) → ((𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))) ∈ (ℕ0
↑𝑚 𝑅) ↔ (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))):𝑅⟶ℕ0)) |
| 190 | 1, 103, 189 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → ((𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))) ∈ (ℕ0
↑𝑚 𝑅) ↔ (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))):𝑅⟶ℕ0)) |
| 191 | 188, 190 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))) ∈ (ℕ0
↑𝑚 𝑅)) |
| 192 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
→ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈
ℕ0) |
| 193 | 192 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈
ℕ0) |
| 194 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑔 = (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))) → (𝑚 Ramsey 𝑔) = (𝑚 Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))))) |
| 195 | 194 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑔 = (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))) → ((𝑚 Ramsey 𝑔) ∈ ℕ0 ↔ (𝑚 Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))))) ∈
ℕ0)) |
| 196 | 195 | rspcv 3305 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))) ∈ (ℕ0
↑𝑚 𝑅) → (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 → (𝑚 Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))))) ∈
ℕ0)) |
| 197 | 191, 193,
196 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (𝑚 Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))))) ∈
ℕ0) |
| 198 | 112, 197 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (((𝑚 + 1) − 1) Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))))) ∈
ℕ0) |
| 199 | | peano2nn0 11333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑚 + 1) − 1) Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))))) ∈ ℕ0 →
((((𝑚 + 1) − 1)
Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))))) + 1) ∈
ℕ0) |
| 200 | 198, 199 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → ((((𝑚 + 1) − 1) Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))))) + 1) ∈
ℕ0) |
| 201 | | nn0p1nn 11332 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ) |
| 202 | 100, 201 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
→ (𝑚 + 1) ∈
ℕ) |
| 203 | 202 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (𝑚 + 1) ∈ ℕ) |
| 204 | | equequ1 1952 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = 𝑤 → (𝑦 = 𝑥 ↔ 𝑤 = 𝑥)) |
| 205 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = 𝑤 → (𝑓‘𝑦) = (𝑓‘𝑤)) |
| 206 | 204, 205 | ifbieq2d 4111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = 𝑤 → if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)) = if(𝑤 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑤))) |
| 207 | 206 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) = (𝑤 ∈ 𝑅 ↦ if(𝑤 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑤))) |
| 208 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = 𝑧 → (𝑤 = 𝑥 ↔ 𝑤 = 𝑧)) |
| 209 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑥 = 𝑧 → (𝑓‘𝑥) = (𝑓‘𝑧)) |
| 210 | 209 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = 𝑧 → ((𝑓‘𝑥) − 1) = ((𝑓‘𝑧) − 1)) |
| 211 | 208, 210 | ifbieq1d 4109 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = 𝑧 → if(𝑤 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑤)) = if(𝑤 = 𝑧, ((𝑓‘𝑧) − 1), (𝑓‘𝑤))) |
| 212 | 211 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = 𝑧 → (𝑤 ∈ 𝑅 ↦ if(𝑤 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑤))) = (𝑤 ∈ 𝑅 ↦ if(𝑤 = 𝑧, ((𝑓‘𝑧) − 1), (𝑓‘𝑤)))) |
| 213 | 207, 212 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = 𝑧 → (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))) = (𝑤 ∈ 𝑅 ↦ if(𝑤 = 𝑧, ((𝑓‘𝑧) − 1), (𝑓‘𝑤)))) |
| 214 | 213 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = 𝑧 → ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))) = ((𝑚 + 1) Ramsey (𝑤 ∈ 𝑅 ↦ if(𝑤 = 𝑧, ((𝑓‘𝑧) − 1), (𝑓‘𝑤))))) |
| 215 | 214 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦))))) = (𝑧 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑤 ∈ 𝑅 ↦ if(𝑤 = 𝑧, ((𝑓‘𝑧) − 1), (𝑓‘𝑤))))) |
| 216 | 203, 103,
104, 215, 188, 198 | ramub1 15732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → ((𝑚 + 1) Ramsey 𝑓) ≤ ((((𝑚 + 1) − 1) Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))))) + 1)) |
| 217 | | ramubcl 15722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑚 + 1) ∈ ℕ0
∧ 𝑅 ∈ Fin ∧
𝑓:𝑅⟶ℕ0) ∧
(((((𝑚 + 1) − 1)
Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))))) + 1) ∈ ℕ0 ∧
((𝑚 + 1) Ramsey 𝑓) ≤ ((((𝑚 + 1) − 1) Ramsey (𝑥 ∈ 𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝑓‘𝑥) − 1), (𝑓‘𝑦)))))) + 1))) → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0) |
| 218 | 102, 103,
107, 200, 216, 217 | syl32anc 1334 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0) |
| 219 | 218 | expr 643 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1)) → (𝑓:𝑅⟶ℕ → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 220 | 219 | adantrl 752 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) → (𝑓:𝑅⟶ℕ → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 221 | 99, 220 | sylbird 250 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) → (∀𝑥 ∈ 𝑅 (𝑓‘𝑥) ∈ ℕ → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 222 | | rexnal 2995 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃𝑥 ∈
𝑅 ¬ (𝑓‘𝑥) ∈ ℕ ↔ ¬ ∀𝑥 ∈ 𝑅 (𝑓‘𝑥) ∈ ℕ) |
| 223 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) → 𝑓:𝑅⟶ℕ0) |
| 224 | 223 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) ∧ 𝑥 ∈ 𝑅) → (𝑓‘𝑥) ∈
ℕ0) |
| 225 | | elnn0 11294 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓‘𝑥) ∈ ℕ0 ↔ ((𝑓‘𝑥) ∈ ℕ ∨ (𝑓‘𝑥) = 0)) |
| 226 | 224, 225 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) ∧ 𝑥 ∈ 𝑅) → ((𝑓‘𝑥) ∈ ℕ ∨ (𝑓‘𝑥) = 0)) |
| 227 | 226 | ord 392 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) ∧ 𝑥 ∈ 𝑅) → (¬ (𝑓‘𝑥) ∈ ℕ → (𝑓‘𝑥) = 0)) |
| 228 | 202 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) → (𝑚 + 1) ∈ ℕ) |
| 229 | | simp-4l 806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) → 𝑅 ∈ Fin) |
| 230 | 228, 229,
223 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) → ((𝑚 + 1) ∈ ℕ ∧ 𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ0)) |
| 231 | | ramz2 15728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑚 + 1) ∈ ℕ ∧ 𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ0) ∧ (𝑥 ∈ 𝑅 ∧ (𝑓‘𝑥) = 0)) → ((𝑚 + 1) Ramsey 𝑓) = 0) |
| 232 | 230, 231 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) ∧ (𝑥 ∈ 𝑅 ∧ (𝑓‘𝑥) = 0)) → ((𝑚 + 1) Ramsey 𝑓) = 0) |
| 233 | 232, 86 | syl6eqel 2709 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) ∧ (𝑥 ∈ 𝑅 ∧ (𝑓‘𝑥) = 0)) → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0) |
| 234 | 233 | expr 643 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) ∧ 𝑥 ∈ 𝑅) → ((𝑓‘𝑥) = 0 → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 235 | 227, 234 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) ∧ 𝑥 ∈ 𝑅) → (¬ (𝑓‘𝑥) ∈ ℕ → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 236 | 235 | rexlimdva 3031 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) → (∃𝑥 ∈ 𝑅 ¬ (𝑓‘𝑥) ∈ ℕ → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 237 | 222, 236 | syl5bir 233 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) → (¬ ∀𝑥 ∈ 𝑅 (𝑓‘𝑥) ∈ ℕ → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 238 | 221, 237 | pm2.61d 170 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
∧ ∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0) |
| 239 | 238 | exp31 630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
→ (∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) → ((𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0))) |
| 240 | 239 | alrimdv 1857 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
→ (∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) →
∀𝑓((𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0))) |
| 241 | | feq1 6026 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = 𝑓 → (ℎ:𝑅⟶ℕ0 ↔ 𝑓:𝑅⟶ℕ0)) |
| 242 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = 𝑓 → (ℎ‘𝑘) = (𝑓‘𝑘)) |
| 243 | 242 | sumeq2sdv 14435 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ = 𝑓 → Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)) |
| 244 | 243 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = 𝑓 → (Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1) ↔ Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1))) |
| 245 | 241, 244 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = 𝑓 → ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1)) ↔ (𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1)))) |
| 246 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = 𝑓 → ((𝑚 + 1) Ramsey ℎ) = ((𝑚 + 1) Ramsey 𝑓)) |
| 247 | 246 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = 𝑓 → (((𝑚 + 1) Ramsey ℎ) ∈ ℕ0 ↔ ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 248 | 245, 247 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = 𝑓 → (((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) ↔ ((𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0))) |
| 249 | 248 | cbvalv 2273 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) ↔
∀𝑓((𝑓:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 250 | 240, 249 | syl6ibr 242 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
→ (∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 251 | 250 | anassrs 680 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ 𝑛 ∈ ℕ0)
→ (∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 252 | 251 | expcom 451 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ (((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
(∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0)))) |
| 253 | 252 | a2d 29 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
→ ((((𝑅 ∈ Fin
∧ 𝑚 ∈
ℕ0) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0)) → (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0)))) |
| 254 | 36, 41, 46, 51, 94, 253 | nn0ind 11472 |
. . . . . . . . . . . . . . 15
⊢
(Σ𝑘 ∈
𝑅 (𝑓‘𝑘) ∈ ℕ0 → (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 255 | 254 | com12 32 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ ∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) →
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) ∈ ℕ0 →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 256 | 255 | adantrl 752 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (𝑓 ∈
(ℕ0 ↑𝑚 𝑅) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) →
(Σ𝑘 ∈ 𝑅 (𝑓‘𝑘) ∈ ℕ0 →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0))) |
| 257 | 31, 256 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (𝑓 ∈
(ℕ0 ↑𝑚 𝑅) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) →
∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)) → ((𝑚 + 1) Ramsey ℎ) ∈
ℕ0)) |
| 258 | 243 | biantrud 528 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑓 → (ℎ:𝑅⟶ℕ0 ↔ (ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)))) |
| 259 | 258, 241 | bitr3d 270 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑓 → ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)) ↔ 𝑓:𝑅⟶ℕ0)) |
| 260 | 259, 247 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑓 → (((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) ↔ (𝑓:𝑅⟶ℕ0 → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0))) |
| 261 | 260 | spv 2260 |
. . . . . . . . . . . 12
⊢
(∀ℎ((ℎ:𝑅⟶ℕ0 ∧
Σ𝑘 ∈ 𝑅 (ℎ‘𝑘) = Σ𝑘 ∈ 𝑅 (𝑓‘𝑘)) → ((𝑚 + 1) Ramsey ℎ) ∈ ℕ0) → (𝑓:𝑅⟶ℕ0 → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 262 | 257, 29, 261 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ (𝑓 ∈
(ℕ0 ↑𝑚 𝑅) ∧ ∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0) |
| 263 | 262 | expr 643 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
∧ 𝑓 ∈
(ℕ0 ↑𝑚 𝑅)) → (∀𝑔 ∈ (ℕ0
↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 → ((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 264 | 263 | ralrimdva 2969 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
→ (∀𝑔 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 →
∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 265 | 27, 264 | syl5bi 232 |
. . . . . . . 8
⊢ ((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0)
→ (∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑓) ∈ ℕ0 →
∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0)) |
| 266 | 265 | expcom 451 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ (𝑅 ∈ Fin →
(∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑓) ∈ ℕ0 →
∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0))) |
| 267 | 266 | a2d 29 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
→ ((𝑅 ∈ Fin
→ ∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)(𝑚 Ramsey 𝑓) ∈ ℕ0) → (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0
↑𝑚 𝑅)((𝑚 + 1) Ramsey 𝑓) ∈
ℕ0))) |
| 268 | 8, 12, 16, 20, 24, 267 | nn0ind 11472 |
. . . . 5
⊢ (𝑀 ∈ ℕ0
→ (𝑅 ∈ Fin →
∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)(𝑀 Ramsey 𝑓) ∈
ℕ0)) |
| 269 | 268 | imp 445 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ Fin) →
∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)(𝑀 Ramsey 𝑓) ∈
ℕ0) |
| 270 | | oveq2 6658 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑀 Ramsey 𝑓) = (𝑀 Ramsey 𝐹)) |
| 271 | 270 | eleq1d 2686 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((𝑀 Ramsey 𝑓) ∈ ℕ0 ↔ (𝑀 Ramsey 𝐹) ∈
ℕ0)) |
| 272 | 271 | rspccv 3306 |
. . . 4
⊢
(∀𝑓 ∈
(ℕ0 ↑𝑚 𝑅)(𝑀 Ramsey 𝑓) ∈ ℕ0 → (𝐹 ∈ (ℕ0
↑𝑚 𝑅) → (𝑀 Ramsey 𝐹) ∈
ℕ0)) |
| 273 | 269, 272 | syl 17 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ Fin) →
(𝐹 ∈
(ℕ0 ↑𝑚 𝑅) → (𝑀 Ramsey 𝐹) ∈
ℕ0)) |
| 274 | 4, 273 | sylbird 250 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ Fin) →
(𝐹:𝑅⟶ℕ0 → (𝑀 Ramsey 𝐹) ∈
ℕ0)) |
| 275 | 274 | 3impia 1261 |
1
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ Fin ∧
𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈
ℕ0) |