MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramz2 Structured version   Visualization version   Unicode version

Theorem ramz2 15728
Description: The Ramsey number when  F has value zero for some color  C. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ramz2  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  ( M Ramsey  F )  =  0 )

Proof of Theorem ramz2
Dummy variables  b 
f  c  s  x  a  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 simpl1 1064 . . . 4  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  M  e.  NN )
32nnnn0d 11351 . . 3  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  M  e.  NN0 )
4 simpl2 1065 . . 3  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  R  e.  V )
5 simpl3 1066 . . 3  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  F : R
--> NN0 )
6 0nn0 11307 . . . 4  |-  0  e.  NN0
76a1i 11 . . 3  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  0  e.  NN0 )
8 simplrl 800 . . . 4  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  C  e.  R )
9 0elpw 4834 . . . . 5  |-  (/)  e.  ~P s
109a1i 11 . . . 4  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  (/)  e.  ~P s )
11 simplrr 801 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( F `  C )  =  0 )
12 0le0 11110 . . . . 5  |-  0  <_  0
1311, 12syl6eqbr 4692 . . . 4  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( F `  C )  <_  0
)
14 simpll1 1100 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  M  e.  NN )
1510hashbc 15711 . . . . . 6  |-  ( M  e.  NN  ->  ( (/) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/) )
1614, 15syl 17 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( (/) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/) )
17 0ss 3972 . . . . 5  |-  (/)  C_  ( `' f " { C } )
1816, 17syl6eqss 3655 . . . 4  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( (/) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " { C } ) )
19 fveq2 6191 . . . . . . 7  |-  ( c  =  C  ->  ( F `  c )  =  ( F `  C ) )
2019breq1d 4663 . . . . . 6  |-  ( c  =  C  ->  (
( F `  c
)  <_  ( # `  x
)  <->  ( F `  C )  <_  ( # `
 x ) ) )
21 sneq 4187 . . . . . . . 8  |-  ( c  =  C  ->  { c }  =  { C } )
2221imaeq2d 5466 . . . . . . 7  |-  ( c  =  C  ->  ( `' f " {
c } )  =  ( `' f " { C } ) )
2322sseq2d 3633 . . . . . 6  |-  ( c  =  C  ->  (
( x ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } )  <->  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " { C } ) ) )
2420, 23anbi12d 747 . . . . 5  |-  ( c  =  C  ->  (
( ( F `  c )  <_  ( # `
 x )  /\  ( x ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) )  <-> 
( ( F `  C )  <_  ( # `
 x )  /\  ( x ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " { C } ) ) ) )
25 fveq2 6191 . . . . . . . 8  |-  ( x  =  (/)  ->  ( # `  x )  =  (
# `  (/) ) )
26 hash0 13158 . . . . . . . 8  |-  ( # `  (/) )  =  0
2725, 26syl6eq 2672 . . . . . . 7  |-  ( x  =  (/)  ->  ( # `  x )  =  0 )
2827breq2d 4665 . . . . . 6  |-  ( x  =  (/)  ->  ( ( F `  C )  <_  ( # `  x
)  <->  ( F `  C )  <_  0
) )
29 oveq1 6657 . . . . . . 7  |-  ( x  =  (/)  ->  ( x ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  ( (/) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) )
3029sseq1d 3632 . . . . . 6  |-  ( x  =  (/)  ->  ( ( x ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  C_  ( `' f " { C } )  <->  ( (/) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " { C } ) ) )
3128, 30anbi12d 747 . . . . 5  |-  ( x  =  (/)  ->  ( ( ( F `  C
)  <_  ( # `  x
)  /\  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " { C } ) )  <->  ( ( F `  C )  <_  0  /\  ( (/) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " { C } ) ) ) )
3224, 31rspc2ev 3324 . . . 4  |-  ( ( C  e.  R  /\  (/) 
e.  ~P s  /\  (
( F `  C
)  <_  0  /\  ( (/) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  C_  ( `' f " { C } ) ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) )
338, 10, 13, 18, 32syl112anc 1330 . . 3  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) )
341, 3, 4, 5, 7, 33ramub 15717 . 2  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  ( M Ramsey  F )  <_  0 )
35 ramubcl 15722 . . . 4  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( 0  e.  NN0  /\  ( M Ramsey  F )  <_  0 ) )  ->  ( M Ramsey  F
)  e.  NN0 )
363, 4, 5, 7, 34, 35syl32anc 1334 . . 3  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  ( M Ramsey  F )  e.  NN0 )
37 nn0le0eq0 11321 . . 3  |-  ( ( M Ramsey  F )  e. 
NN0  ->  ( ( M Ramsey  F )  <_  0  <->  ( M Ramsey  F )  =  0 ) )
3836, 37syl 17 . 2  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  ( ( M Ramsey  F )  <_  0  <->  ( M Ramsey  F )  =  0 ) )
3934, 38mpbid 222 1  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  ( M Ramsey  F )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653   `'ccnv 5113   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936    <_ cle 10075   NNcn 11020   NN0cn0 11292   #chash 13117   Ramsey cram 15703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-fac 13061  df-bc 13090  df-hash 13118  df-ram 15705
This theorem is referenced by:  ramz  15729  ramcl  15733
  Copyright terms: Public domain W3C validator