MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resssetc Structured version   Visualization version   GIF version

Theorem resssetc 16742
Description: The restriction of the category of sets to a subset is the category of sets in the subset. Thus, the SetCat‘𝑈 categories for different 𝑈 are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resssetc.c 𝐶 = (SetCat‘𝑈)
resssetc.d 𝐷 = (SetCat‘𝑉)
resssetc.1 (𝜑𝑈𝑊)
resssetc.2 (𝜑𝑉𝑈)
Assertion
Ref Expression
resssetc (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))

Proof of Theorem resssetc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resssetc.d . . . . . 6 𝐷 = (SetCat‘𝑉)
2 resssetc.1 . . . . . . . 8 (𝜑𝑈𝑊)
3 resssetc.2 . . . . . . . 8 (𝜑𝑉𝑈)
42, 3ssexd 4805 . . . . . . 7 (𝜑𝑉 ∈ V)
54adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑉 ∈ V)
6 eqid 2622 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
7 simprl 794 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
8 simprr 796 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
91, 5, 6, 7, 8setchom 16730 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑦𝑚 𝑥))
10 resssetc.c . . . . . 6 𝐶 = (SetCat‘𝑈)
112adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑈𝑊)
12 eqid 2622 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
133adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑉𝑈)
1413, 7sseldd 3604 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑈)
1513, 8sseldd 3604 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑈)
1610, 11, 12, 14, 15setchom 16730 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑦𝑚 𝑥))
17 eqid 2622 . . . . . . . 8 (𝐶s 𝑉) = (𝐶s 𝑉)
1817, 12resshom 16078 . . . . . . 7 (𝑉 ∈ V → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
194, 18syl 17 . . . . . 6 (𝜑 → (Hom ‘𝐶) = (Hom ‘(𝐶s 𝑉)))
2019oveqdr 6674 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘(𝐶s 𝑉))𝑦))
219, 16, 203eqtr2rd 2663 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
2221ralrimivva 2971 . . 3 (𝜑 → ∀𝑥𝑉𝑦𝑉 (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦))
23 eqid 2622 . . . 4 (Hom ‘(𝐶s 𝑉)) = (Hom ‘(𝐶s 𝑉))
2410, 2setcbas 16728 . . . . . 6 (𝜑𝑈 = (Base‘𝐶))
253, 24sseqtrd 3641 . . . . 5 (𝜑𝑉 ⊆ (Base‘𝐶))
26 eqid 2622 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2717, 26ressbas2 15931 . . . . 5 (𝑉 ⊆ (Base‘𝐶) → 𝑉 = (Base‘(𝐶s 𝑉)))
2825, 27syl 17 . . . 4 (𝜑𝑉 = (Base‘(𝐶s 𝑉)))
291, 4setcbas 16728 . . . 4 (𝜑𝑉 = (Base‘𝐷))
3023, 6, 28, 29homfeq 16354 . . 3 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ↔ ∀𝑥𝑉𝑦𝑉 (𝑥(Hom ‘(𝐶s 𝑉))𝑦) = (𝑥(Hom ‘𝐷)𝑦)))
3122, 30mpbird 247 . 2 (𝜑 → (Homf ‘(𝐶s 𝑉)) = (Homf𝐷))
324ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉 ∈ V)
33 eqid 2622 . . . . . . . 8 (comp‘𝐷) = (comp‘𝐷)
34 simplr1 1103 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥𝑉)
35 simplr2 1104 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦𝑉)
36 simplr3 1105 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧𝑉)
37 simprl 794 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦))
381, 32, 6, 34, 35elsetchom 16731 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ↔ 𝑓:𝑥𝑦))
3937, 38mpbid 222 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑓:𝑥𝑦)
40 simprr 796 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
411, 32, 6, 35, 36elsetchom 16731 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↔ 𝑔:𝑦𝑧))
4240, 41mpbid 222 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑔:𝑦𝑧)
431, 32, 33, 34, 35, 36, 39, 42setcco 16733 . . . . . . 7 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔𝑓))
442ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑈𝑊)
45 eqid 2622 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
463ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑉𝑈)
4746, 34sseldd 3604 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑥𝑈)
4846, 35sseldd 3604 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑦𝑈)
4946, 36sseldd 3604 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → 𝑧𝑈)
5010, 44, 45, 47, 48, 49, 39, 42setcco 16733 . . . . . . 7 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔𝑓))
5117, 45ressco 16079 . . . . . . . . . . 11 (𝑉 ∈ V → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
524, 51syl 17 . . . . . . . . . 10 (𝜑 → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
5352ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (comp‘𝐶) = (comp‘(𝐶s 𝑉)))
5453oveqd 6667 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧))
5554oveqd 6667 . . . . . . 7 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
5643, 50, 553eqtr2d 2662 . . . . . 6 (((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
5756ralrimivva 2971 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
5857ralrimivvva 2972 . . . 4 (𝜑 → ∀𝑥𝑉𝑦𝑉𝑧𝑉𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓))
59 eqid 2622 . . . . 5 (comp‘(𝐶s 𝑉)) = (comp‘(𝐶s 𝑉))
6031eqcomd 2628 . . . . 5 (𝜑 → (Homf𝐷) = (Homf ‘(𝐶s 𝑉)))
6133, 59, 6, 29, 28, 60comfeq 16366 . . . 4 (𝜑 → ((compf𝐷) = (compf‘(𝐶s 𝑉)) ↔ ∀𝑥𝑉𝑦𝑉𝑧𝑉𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝐶s 𝑉))𝑧)𝑓)))
6258, 61mpbird 247 . . 3 (𝜑 → (compf𝐷) = (compf‘(𝐶s 𝑉)))
6362eqcomd 2628 . 2 (𝜑 → (compf‘(𝐶s 𝑉)) = (compf𝐷))
6431, 63jca 554 1 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  cop 4183  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Basecbs 15857  s cress 15858  Hom chom 15952  compcco 15953  Homf chomf 16327  compfccomf 16328  SetCatcsetc 16725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-hom 15966  df-cco 15967  df-homf 16331  df-comf 16332  df-setc 16726
This theorem is referenced by:  funcsetcres2  16743
  Copyright terms: Public domain W3C validator