![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setcco | Structured version Visualization version GIF version |
Description: Composition in the category of sets. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
setcbas.c | ⊢ 𝐶 = (SetCat‘𝑈) |
setcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
setcco.o | ⊢ · = (comp‘𝐶) |
setcco.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
setcco.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
setcco.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
setcco.f | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
setcco.g | ⊢ (𝜑 → 𝐺:𝑌⟶𝑍) |
Ref | Expression |
---|---|
setcco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setcbas.c | . . . 4 ⊢ 𝐶 = (SetCat‘𝑈) | |
2 | setcbas.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | setcco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
4 | 1, 2, 3 | setccofval 16732 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑𝑚 (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
5 | simprr 796 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
6 | simprl 794 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
7 | 6 | fveq2d 6195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
8 | setcco.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
9 | setcco.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
10 | op2ndg 7181 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
11 | 8, 9, 10 | syl2anc 693 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
12 | 11 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
13 | 7, 12 | eqtrd 2656 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
14 | 5, 13 | oveq12d 6668 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑧 ↑𝑚 (2nd ‘𝑣)) = (𝑍 ↑𝑚 𝑌)) |
15 | 6 | fveq2d 6195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = (1st ‘〈𝑋, 𝑌〉)) |
16 | op1stg 7180 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
17 | 8, 9, 16 | syl2anc 693 | . . . . . . 7 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
18 | 17 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
19 | 15, 18 | eqtrd 2656 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = 𝑋) |
20 | 13, 19 | oveq12d 6668 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) = (𝑌 ↑𝑚 𝑋)) |
21 | eqidd 2623 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓)) | |
22 | 14, 20, 21 | mpt2eq123dv 6717 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ (𝑧 ↑𝑚 (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (𝑍 ↑𝑚 𝑌), 𝑓 ∈ (𝑌 ↑𝑚 𝑋) ↦ (𝑔 ∘ 𝑓))) |
23 | opelxpi 5148 | . . . 4 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 〈𝑋, 𝑌〉 ∈ (𝑈 × 𝑈)) | |
24 | 8, 9, 23 | syl2anc 693 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝑈 × 𝑈)) |
25 | setcco.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
26 | ovex 6678 | . . . . 5 ⊢ (𝑍 ↑𝑚 𝑌) ∈ V | |
27 | ovex 6678 | . . . . 5 ⊢ (𝑌 ↑𝑚 𝑋) ∈ V | |
28 | 26, 27 | mpt2ex 7247 | . . . 4 ⊢ (𝑔 ∈ (𝑍 ↑𝑚 𝑌), 𝑓 ∈ (𝑌 ↑𝑚 𝑋) ↦ (𝑔 ∘ 𝑓)) ∈ V |
29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑍 ↑𝑚 𝑌), 𝑓 ∈ (𝑌 ↑𝑚 𝑋) ↦ (𝑔 ∘ 𝑓)) ∈ V) |
30 | 4, 22, 24, 25, 29 | ovmpt2d 6788 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑍 ↑𝑚 𝑌), 𝑓 ∈ (𝑌 ↑𝑚 𝑋) ↦ (𝑔 ∘ 𝑓))) |
31 | simprl 794 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑔 = 𝐺) | |
32 | simprr 796 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) | |
33 | 31, 32 | coeq12d 5286 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹)) |
34 | setcco.g | . . 3 ⊢ (𝜑 → 𝐺:𝑌⟶𝑍) | |
35 | 25, 9 | elmapd 7871 | . . 3 ⊢ (𝜑 → (𝐺 ∈ (𝑍 ↑𝑚 𝑌) ↔ 𝐺:𝑌⟶𝑍)) |
36 | 34, 35 | mpbird 247 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑍 ↑𝑚 𝑌)) |
37 | setcco.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
38 | 9, 8 | elmapd 7871 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝐹:𝑋⟶𝑌)) |
39 | 37, 38 | mpbird 247 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑌 ↑𝑚 𝑋)) |
40 | coexg 7117 | . . 3 ⊢ ((𝐺 ∈ (𝑍 ↑𝑚 𝑌) ∧ 𝐹 ∈ (𝑌 ↑𝑚 𝑋)) → (𝐺 ∘ 𝐹) ∈ V) | |
41 | 36, 39, 40 | syl2anc 693 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
42 | 30, 33, 36, 39, 41 | ovmpt2d 6788 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 〈cop 4183 × cxp 5112 ∘ ccom 5118 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 1st c1st 7166 2nd c2nd 7167 ↑𝑚 cmap 7857 compcco 15953 SetCatcsetc 16725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-hom 15966 df-cco 15967 df-setc 16726 |
This theorem is referenced by: setccatid 16734 setcmon 16737 setcepi 16738 setcsect 16739 resssetc 16742 funcestrcsetclem9 16788 funcsetcestrclem9 16803 hofcllem 16898 yonedalem4c 16917 yonedalem3b 16919 yonedainv 16921 funcringcsetcALTV2lem9 42044 funcringcsetclem9ALTV 42067 |
Copyright terms: Public domain | W3C validator |