MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem10 Structured version   Visualization version   Unicode version

Theorem rpnnen2lem10 14952
Description: Lemma for rpnnen2 14955. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypotheses
Ref Expression
rpnnen2.1  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
rpnnen2.2  |-  ( ph  ->  A  C_  NN )
rpnnen2.3  |-  ( ph  ->  B  C_  NN )
rpnnen2.4  |-  ( ph  ->  m  e.  ( A 
\  B ) )
rpnnen2.5  |-  ( ph  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  A  <->  n  e.  B ) ) )
rpnnen2.6  |-  ( ps  <->  sum_ k  e.  NN  (
( F `  A
) `  k )  =  sum_ k  e.  NN  ( ( F `  B ) `  k
) )
Assertion
Ref Expression
rpnnen2lem10  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  =  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
)
Distinct variable groups:    m, n, x, k    A, k, n, x    B, k, n, x   
k, m, F    ph, k
Allowed substitution hints:    ph( x, m, n)    ps( x, k, m, n)    A( m)    B( m)    F( x, n)

Proof of Theorem rpnnen2lem10
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
2 rpnnen2.6 . . . 4  |-  ( ps  <->  sum_ k  e.  NN  (
( F `  A
) `  k )  =  sum_ k  e.  NN  ( ( F `  B ) `  k
) )
31, 2sylib 208 . . 3  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  NN  ( ( F `  A ) `  k
)  =  sum_ k  e.  NN  ( ( F `
 B ) `  k ) )
4 rpnnen2.2 . . . . . 6  |-  ( ph  ->  A  C_  NN )
5 rpnnen2.4 . . . . . . 7  |-  ( ph  ->  m  e.  ( A 
\  B ) )
6 eldifi 3732 . . . . . . . 8  |-  ( m  e.  ( A  \  B )  ->  m  e.  A )
7 ssel2 3598 . . . . . . . 8  |-  ( ( A  C_  NN  /\  m  e.  A )  ->  m  e.  NN )
86, 7sylan2 491 . . . . . . 7  |-  ( ( A  C_  NN  /\  m  e.  ( A  \  B
) )  ->  m  e.  NN )
94, 5, 8syl2anc 693 . . . . . 6  |-  ( ph  ->  m  e.  NN )
10 rpnnen2.1 . . . . . . 7  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
1110rpnnen2lem8 14950 . . . . . 6  |-  ( ( A  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  NN  ( ( F `
 A ) `  k )  =  (
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  A ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) ) )
124, 9, 11syl2anc 693 . . . . 5  |-  ( ph  -> 
sum_ k  e.  NN  ( ( F `  A ) `  k
)  =  ( sum_ k  e.  ( 1 ... ( m  - 
1 ) ) ( ( F `  A
) `  k )  +  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )
) )
13 1z 11407 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
14 nnz 11399 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  ZZ )
15 elfzm11 12411 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ZZ  /\  m  e.  ZZ )  ->  ( k  e.  ( 1 ... ( m  -  1 ) )  <-> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  m ) ) )
1613, 14, 15sylancr 695 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  (
k  e.  ( 1 ... ( m  - 
1 ) )  <->  ( k  e.  ZZ  /\  1  <_ 
k  /\  k  <  m ) ) )
1716biimpa 501 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  k  e.  ( 1 ... ( m  - 
1 ) ) )  ->  ( k  e.  ZZ  /\  1  <_ 
k  /\  k  <  m ) )
189, 17sylan 488 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
k  e.  ZZ  /\  1  <_  k  /\  k  <  m ) )
1918simp3d 1075 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  k  <  m )
20 rpnnen2.5 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  A  <->  n  e.  B ) ) )
21 elfznn 12370 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( m  -  1 ) )  ->  k  e.  NN )
22 breq1 4656 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
n  <  m  <->  k  <  m ) )
23 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
n  e.  A  <->  k  e.  A ) )
24 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
n  e.  B  <->  k  e.  B ) )
2523, 24bibi12d 335 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
( n  e.  A  <->  n  e.  B )  <->  ( k  e.  A  <->  k  e.  B
) ) )
2622, 25imbi12d 334 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( n  <  m  ->  ( n  e.  A  <->  n  e.  B ) )  <-> 
( k  <  m  ->  ( k  e.  A  <->  k  e.  B ) ) ) )
2726rspccva 3308 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  ( n  <  m  -> 
( n  e.  A  <->  n  e.  B ) )  /\  k  e.  NN )  ->  ( k  < 
m  ->  ( k  e.  A  <->  k  e.  B
) ) )
2820, 21, 27syl2an 494 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
k  <  m  ->  ( k  e.  A  <->  k  e.  B ) ) )
2919, 28mpd 15 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
k  e.  A  <->  k  e.  B ) )
3029ifbid 4108 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  if ( k  e.  A ,  ( ( 1  /  3 ) ^
k ) ,  0 )  =  if ( k  e.  B , 
( ( 1  / 
3 ) ^ k
) ,  0 ) )
3110rpnnen2lem1 14943 . . . . . . . . 9  |-  ( ( A  C_  NN  /\  k  e.  NN )  ->  (
( F `  A
) `  k )  =  if ( k  e.  A ,  ( ( 1  /  3 ) ^ k ) ,  0 ) )
324, 21, 31syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
( F `  A
) `  k )  =  if ( k  e.  A ,  ( ( 1  /  3 ) ^ k ) ,  0 ) )
33 rpnnen2.3 . . . . . . . . 9  |-  ( ph  ->  B  C_  NN )
3410rpnnen2lem1 14943 . . . . . . . . 9  |-  ( ( B  C_  NN  /\  k  e.  NN )  ->  (
( F `  B
) `  k )  =  if ( k  e.  B ,  ( ( 1  /  3 ) ^ k ) ,  0 ) )
3533, 21, 34syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
( F `  B
) `  k )  =  if ( k  e.  B ,  ( ( 1  /  3 ) ^ k ) ,  0 ) )
3630, 32, 353eqtr4d 2666 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
( F `  A
) `  k )  =  ( ( F `
 B ) `  k ) )
3736sumeq2dv 14433 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  A ) `  k
)  =  sum_ k  e.  ( 1 ... (
m  -  1 ) ) ( ( F `
 B ) `  k ) )
3837oveq1d 6665 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  A ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) )  =  (
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) ) )
3912, 38eqtrd 2656 . . . 4  |-  ( ph  -> 
sum_ k  e.  NN  ( ( F `  A ) `  k
)  =  ( sum_ k  e.  ( 1 ... ( m  - 
1 ) ) ( ( F `  B
) `  k )  +  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )
) )
4039adantr 481 . . 3  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  NN  ( ( F `  A ) `  k
)  =  ( sum_ k  e.  ( 1 ... ( m  - 
1 ) ) ( ( F `  B
) `  k )  +  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )
) )
4110rpnnen2lem8 14950 . . . . 5  |-  ( ( B  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  NN  ( ( F `
 B ) `  k )  =  (
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
) ) )
4233, 9, 41syl2anc 693 . . . 4  |-  ( ph  -> 
sum_ k  e.  NN  ( ( F `  B ) `  k
)  =  ( sum_ k  e.  ( 1 ... ( m  - 
1 ) ) ( ( F `  B
) `  k )  +  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
) )
4342adantr 481 . . 3  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  NN  ( ( F `  B ) `  k
)  =  ( sum_ k  e.  ( 1 ... ( m  - 
1 ) ) ( ( F `  B
) `  k )  +  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
) )
443, 40, 433eqtr3d 2664 . 2  |-  ( (
ph  /\  ps )  ->  ( sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) )  =  (
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
) ) )
4510rpnnen2lem6 14948 . . . . 5  |-  ( ( A  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
)  e.  RR )
464, 9, 45syl2anc 693 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  e.  RR )
4710rpnnen2lem6 14948 . . . . 5  |-  ( ( B  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
)  e.  RR )
4833, 9, 47syl2anc 693 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  e.  RR )
49 fzfid 12772 . . . . 5  |-  ( ph  ->  ( 1 ... (
m  -  1 ) )  e.  Fin )
5010rpnnen2lem2 14944 . . . . . . 7  |-  ( B 
C_  NN  ->  ( F `
 B ) : NN --> RR )
5133, 50syl 17 . . . . . 6  |-  ( ph  ->  ( F `  B
) : NN --> RR )
52 ffvelrn 6357 . . . . . 6  |-  ( ( ( F `  B
) : NN --> RR  /\  k  e.  NN )  ->  ( ( F `  B ) `  k
)  e.  RR )
5351, 21, 52syl2an 494 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
( F `  B
) `  k )  e.  RR )
5449, 53fsumrecl 14465 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  e.  RR )
55 readdcan 10210 . . . 4  |-  ( (
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  e.  RR  /\  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
)  e.  RR  /\  sum_ k  e.  ( 1 ... ( m  - 
1 ) ) ( ( F `  B
) `  k )  e.  RR )  ->  (
( sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) )  =  (
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
) )  <->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
)  =  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
) ) )
5646, 48, 54, 55syl3anc 1326 . . 3  |-  ( ph  ->  ( ( sum_ k  e.  ( 1 ... (
m  -  1 ) ) ( ( F `
 B ) `  k )  +  sum_ k  e.  ( ZZ>= `  m ) ( ( F `  A ) `
 k ) )  =  ( sum_ k  e.  ( 1 ... (
m  -  1 ) ) ( ( F `
 B ) `  k )  +  sum_ k  e.  ( ZZ>= `  m ) ( ( F `  B ) `
 k ) )  <->  sum_ k  e.  ( ZZ>= `  m ) ( ( F `  A ) `
 k )  = 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
) )
5756adantr 481 . 2  |-  ( (
ph  /\  ps )  ->  ( ( sum_ k  e.  ( 1 ... (
m  -  1 ) ) ( ( F `
 B ) `  k )  +  sum_ k  e.  ( ZZ>= `  m ) ( ( F `  A ) `
 k ) )  =  ( sum_ k  e.  ( 1 ... (
m  -  1 ) ) ( ( F `
 B ) `  k )  +  sum_ k  e.  ( ZZ>= `  m ) ( ( F `  B ) `
 k ) )  <->  sum_ k  e.  ( ZZ>= `  m ) ( ( F `  A ) `
 k )  = 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
) )
5844, 57mpbid 222 1  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  =  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    C_ wss 3574   ifcif 4086   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   3c3 11071   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  rpnnen2lem11  14953
  Copyright terms: Public domain W3C validator