| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnmet | Structured version Visualization version Unicode version | ||
| Description: Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
| Ref | Expression |
|---|---|
| rrnval.1 |
|
| Ref | Expression |
|---|---|
| rrnmet |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . . . . 7
| |
| 2 | simprl 794 |
. . . . . . . . . . . 12
| |
| 3 | rrnval.1 |
. . . . . . . . . . . 12
| |
| 4 | 2, 3 | syl6eleq 2711 |
. . . . . . . . . . 11
|
| 5 | elmapi 7879 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . 10
|
| 7 | 6 | ffvelrnda 6359 |
. . . . . . . . 9
|
| 8 | simprr 796 |
. . . . . . . . . . . 12
| |
| 9 | 8, 3 | syl6eleq 2711 |
. . . . . . . . . . 11
|
| 10 | elmapi 7879 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . 10
|
| 12 | 11 | ffvelrnda 6359 |
. . . . . . . . 9
|
| 13 | 7, 12 | resubcld 10458 |
. . . . . . . 8
|
| 14 | 13 | resqcld 13035 |
. . . . . . 7
|
| 15 | 1, 14 | fsumrecl 14465 |
. . . . . 6
|
| 16 | 13 | sqge0d 13036 |
. . . . . . 7
|
| 17 | 1, 14, 16 | fsumge0 14527 |
. . . . . 6
|
| 18 | 15, 17 | resqrtcld 14156 |
. . . . 5
|
| 19 | 18 | ralrimivva 2971 |
. . . 4
|
| 20 | eqid 2622 |
. . . . 5
| |
| 21 | 20 | fmpt2 7237 |
. . . 4
|
| 22 | 19, 21 | sylib 208 |
. . 3
|
| 23 | 3 | rrnval 33626 |
. . . 4
|
| 24 | 23 | feq1d 6030 |
. . 3
|
| 25 | 22, 24 | mpbird 247 |
. 2
|
| 26 | sqrt00 14004 |
. . . . . . . 8
| |
| 27 | 15, 17, 26 | syl2anc 693 |
. . . . . . 7
|
| 28 | 1, 14, 16 | fsum00 14530 |
. . . . . . 7
|
| 29 | 27, 28 | bitrd 268 |
. . . . . 6
|
| 30 | 13 | recnd 10068 |
. . . . . . . . 9
|
| 31 | sqeq0 12927 |
. . . . . . . . 9
| |
| 32 | 30, 31 | syl 17 |
. . . . . . . 8
|
| 33 | 7 | recnd 10068 |
. . . . . . . . 9
|
| 34 | 12 | recnd 10068 |
. . . . . . . . 9
|
| 35 | 33, 34 | subeq0ad 10402 |
. . . . . . . 8
|
| 36 | 32, 35 | bitrd 268 |
. . . . . . 7
|
| 37 | 36 | ralbidva 2985 |
. . . . . 6
|
| 38 | 29, 37 | bitrd 268 |
. . . . 5
|
| 39 | 3 | rrnmval 33627 |
. . . . . . 7
|
| 40 | 39 | 3expb 1266 |
. . . . . 6
|
| 41 | 40 | eqeq1d 2624 |
. . . . 5
|
| 42 | ffn 6045 |
. . . . . . 7
| |
| 43 | 6, 42 | syl 17 |
. . . . . 6
|
| 44 | ffn 6045 |
. . . . . . 7
| |
| 45 | 11, 44 | syl 17 |
. . . . . 6
|
| 46 | eqfnfv 6311 |
. . . . . 6
| |
| 47 | 43, 45, 46 | syl2anc 693 |
. . . . 5
|
| 48 | 38, 41, 47 | 3bitr4d 300 |
. . . 4
|
| 49 | simpll 790 |
. . . . . . . 8
| |
| 50 | 7 | adantlr 751 |
. . . . . . . . 9
|
| 51 | simpr 477 |
. . . . . . . . . . . 12
| |
| 52 | 51, 3 | syl6eleq 2711 |
. . . . . . . . . . 11
|
| 53 | elmapi 7879 |
. . . . . . . . . . 11
| |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . 10
|
| 55 | 54 | ffvelrnda 6359 |
. . . . . . . . 9
|
| 56 | 50, 55 | resubcld 10458 |
. . . . . . . 8
|
| 57 | 12 | adantlr 751 |
. . . . . . . . 9
|
| 58 | 55, 57 | resubcld 10458 |
. . . . . . . 8
|
| 59 | 49, 56, 58 | trirn 23183 |
. . . . . . 7
|
| 60 | 33 | adantlr 751 |
. . . . . . . . . . 11
|
| 61 | 55 | recnd 10068 |
. . . . . . . . . . 11
|
| 62 | 34 | adantlr 751 |
. . . . . . . . . . 11
|
| 63 | 60, 61, 62 | npncand 10416 |
. . . . . . . . . 10
|
| 64 | 63 | oveq1d 6665 |
. . . . . . . . 9
|
| 65 | 64 | sumeq2dv 14433 |
. . . . . . . 8
|
| 66 | 65 | fveq2d 6195 |
. . . . . . 7
|
| 67 | sqsubswap 12924 |
. . . . . . . . . . 11
| |
| 68 | 60, 61, 67 | syl2anc 693 |
. . . . . . . . . 10
|
| 69 | 68 | sumeq2dv 14433 |
. . . . . . . . 9
|
| 70 | 69 | fveq2d 6195 |
. . . . . . . 8
|
| 71 | 70 | oveq1d 6665 |
. . . . . . 7
|
| 72 | 59, 66, 71 | 3brtr3d 4684 |
. . . . . 6
|
| 73 | 40 | adantr 481 |
. . . . . 6
|
| 74 | 3 | rrnmval 33627 |
. . . . . . . . . 10
|
| 75 | 74 | 3adant3r 1323 |
. . . . . . . . 9
|
| 76 | 3 | rrnmval 33627 |
. . . . . . . . . 10
|
| 77 | 76 | 3adant3l 1322 |
. . . . . . . . 9
|
| 78 | 75, 77 | oveq12d 6668 |
. . . . . . . 8
|
| 79 | 78 | 3expa 1265 |
. . . . . . 7
|
| 80 | 79 | an32s 846 |
. . . . . 6
|
| 81 | 72, 73, 80 | 3brtr4d 4685 |
. . . . 5
|
| 82 | 81 | ralrimiva 2966 |
. . . 4
|
| 83 | 48, 82 | jca 554 |
. . 3
|
| 84 | 83 | ralrimivva 2971 |
. 2
|
| 85 | ovex 6678 |
. . . 4
| |
| 86 | 3, 85 | eqeltri 2697 |
. . 3
|
| 87 | ismet 22128 |
. . 3
| |
| 88 | 86, 87 | ax-mp 5 |
. 2
|
| 89 | 25, 84, 88 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ico 12181 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-met 19740 df-rrn 33625 |
| This theorem is referenced by: rrncmslem 33631 rrncms 33632 rrnequiv 33634 rrntotbnd 33635 rrnheibor 33636 ismrer1 33637 reheibor 33638 |
| Copyright terms: Public domain | W3C validator |