Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbalt Structured version   Visualization version   Unicode version

Theorem sbgoldbalt 41669
Description: An alternate (related to the original) formulation of the binary Goldbach conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
sbgoldbalt  |-  ( A. n  e. Even  ( 4  <  n  ->  n  e. GoldbachEven  )  <->  A. n  e. Even  ( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
Distinct variable group:    n, p, q

Proof of Theorem sbgoldbalt
StepHypRef Expression
1 2z 11409 . . . . . 6  |-  2  e.  ZZ
2 evenz 41543 . . . . . 6  |-  ( n  e. Even  ->  n  e.  ZZ )
3 zltp1le 11427 . . . . . 6  |-  ( ( 2  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  <  n  <->  ( 2  +  1 )  <_  n ) )
41, 2, 3sylancr 695 . . . . 5  |-  ( n  e. Even  ->  ( 2  < 
n  <->  ( 2  +  1 )  <_  n
) )
5 2p1e3 11151 . . . . . . 7  |-  ( 2  +  1 )  =  3
65breq1i 4660 . . . . . 6  |-  ( ( 2  +  1 )  <_  n  <->  3  <_  n )
7 3re 11094 . . . . . . . . 9  |-  3  e.  RR
87a1i 11 . . . . . . . 8  |-  ( n  e. Even  ->  3  e.  RR )
92zred 11482 . . . . . . . 8  |-  ( n  e. Even  ->  n  e.  RR )
108, 9leloed 10180 . . . . . . 7  |-  ( n  e. Even  ->  ( 3  <_  n 
<->  ( 3  <  n  \/  3  =  n
) ) )
11 3z 11410 . . . . . . . . . . . 12  |-  3  e.  ZZ
12 zltp1le 11427 . . . . . . . . . . . 12  |-  ( ( 3  e.  ZZ  /\  n  e.  ZZ )  ->  ( 3  <  n  <->  ( 3  +  1 )  <_  n ) )
1311, 2, 12sylancr 695 . . . . . . . . . . 11  |-  ( n  e. Even  ->  ( 3  < 
n  <->  ( 3  +  1 )  <_  n
) )
14 3p1e4 11153 . . . . . . . . . . . . 13  |-  ( 3  +  1 )  =  4
1514breq1i 4660 . . . . . . . . . . . 12  |-  ( ( 3  +  1 )  <_  n  <->  4  <_  n )
16 4re 11097 . . . . . . . . . . . . . . 15  |-  4  e.  RR
1716a1i 11 . . . . . . . . . . . . . 14  |-  ( n  e. Even  ->  4  e.  RR )
1817, 9leloed 10180 . . . . . . . . . . . . 13  |-  ( n  e. Even  ->  ( 4  <_  n 
<->  ( 4  <  n  \/  4  =  n
) ) )
19 pm3.35 611 . . . . . . . . . . . . . . . . . 18  |-  ( ( 4  <  n  /\  ( 4  <  n  ->  n  e. GoldbachEven  ) )  ->  n  e. GoldbachEven  )
20 isgbe 41639 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e. GoldbachEven 
<->  ( n  e. Even  /\  E. p  e.  Prime  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) ) ) )
21 simp3 1063 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) )  ->  n  =  ( p  +  q
) )
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( n  e. Even  /\  p  e.  Prime )  /\  q  e.  Prime )  -> 
( ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) )  ->  n  =  ( p  +  q ) ) )
2322reximdva 3017 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  e. Even  /\  p  e.  Prime )  ->  ( E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) )  ->  E. q  e.  Prime  n  =  ( p  +  q ) ) )
2423reximdva 3017 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e. Even  ->  ( E. p  e.  Prime  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
2524imp 445 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e. Even  /\  E. p  e.  Prime  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) ) )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )
2620, 25sylbi 207 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e. GoldbachEven  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )
2726a1d 25 . . . . . . . . . . . . . . . . . 18  |-  ( n  e. GoldbachEven  ->  ( n  e. Even 
->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
2819, 27syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( 4  <  n  /\  ( 4  <  n  ->  n  e. GoldbachEven  ) )  -> 
( n  e. Even  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
2928ex 450 . . . . . . . . . . . . . . . 16  |-  ( 4  <  n  ->  (
( 4  <  n  ->  n  e. GoldbachEven  )  ->  (
n  e. Even  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
3029com23 86 . . . . . . . . . . . . . . 15  |-  ( 4  <  n  ->  (
n  e. Even  ->  ( ( 4  <  n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
31 2prm 15405 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  Prime
32 2p2e4 11144 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  +  2 )  =  4
3332eqcomi 2631 . . . . . . . . . . . . . . . . . . 19  |-  4  =  ( 2  +  2 )
34 rspceov 6692 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  Prime  /\  2  e.  Prime  /\  4  =  ( 2  +  2 ) )  ->  E. p  e.  Prime  E. q  e.  Prime  4  =  ( p  +  q ) )
3531, 31, 33, 34mp3an 1424 . . . . . . . . . . . . . . . . . 18  |-  E. p  e.  Prime  E. q  e.  Prime  4  =  ( p  +  q )
36 eqeq1 2626 . . . . . . . . . . . . . . . . . . 19  |-  ( 4  =  n  ->  (
4  =  ( p  +  q )  <->  n  =  ( p  +  q
) ) )
37362rexbidv 3057 . . . . . . . . . . . . . . . . . 18  |-  ( 4  =  n  ->  ( E. p  e.  Prime  E. q  e.  Prime  4  =  ( p  +  q )  <->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
3835, 37mpbii 223 . . . . . . . . . . . . . . . . 17  |-  ( 4  =  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )
3938a1d 25 . . . . . . . . . . . . . . . 16  |-  ( 4  =  n  ->  (
( 4  <  n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
4039a1d 25 . . . . . . . . . . . . . . 15  |-  ( 4  =  n  ->  (
n  e. Even  ->  ( ( 4  <  n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
4130, 40jaoi 394 . . . . . . . . . . . . . 14  |-  ( ( 4  <  n  \/  4  =  n )  ->  ( n  e. Even 
->  ( ( 4  < 
n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
4241com12 32 . . . . . . . . . . . . 13  |-  ( n  e. Even  ->  ( ( 4  <  n  \/  4  =  n )  -> 
( ( 4  < 
n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
4318, 42sylbid 230 . . . . . . . . . . . 12  |-  ( n  e. Even  ->  ( 4  <_  n  ->  ( ( 4  <  n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
4415, 43syl5bi 232 . . . . . . . . . . 11  |-  ( n  e. Even  ->  ( ( 3  +  1 )  <_  n  ->  ( ( 4  <  n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
4513, 44sylbid 230 . . . . . . . . . 10  |-  ( n  e. Even  ->  ( 3  < 
n  ->  ( (
4  <  n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
4645com12 32 . . . . . . . . 9  |-  ( 3  <  n  ->  (
n  e. Even  ->  ( ( 4  <  n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
47 3odd 41617 . . . . . . . . . . . 12  |-  3  e. Odd
48 eleq1 2689 . . . . . . . . . . . 12  |-  ( 3  =  n  ->  (
3  e. Odd  <->  n  e. Odd  ) )
4947, 48mpbii 223 . . . . . . . . . . 11  |-  ( 3  =  n  ->  n  e. Odd  )
50 oddneven 41557 . . . . . . . . . . 11  |-  ( n  e. Odd  ->  -.  n  e. Even  )
5149, 50syl 17 . . . . . . . . . 10  |-  ( 3  =  n  ->  -.  n  e. Even  )
5251pm2.21d 118 . . . . . . . . 9  |-  ( 3  =  n  ->  (
n  e. Even  ->  ( ( 4  <  n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
5346, 52jaoi 394 . . . . . . . 8  |-  ( ( 3  <  n  \/  3  =  n )  ->  ( n  e. Even 
->  ( ( 4  < 
n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
5453com12 32 . . . . . . 7  |-  ( n  e. Even  ->  ( ( 3  <  n  \/  3  =  n )  -> 
( ( 4  < 
n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
5510, 54sylbid 230 . . . . . 6  |-  ( n  e. Even  ->  ( 3  <_  n  ->  ( ( 4  <  n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
566, 55syl5bi 232 . . . . 5  |-  ( n  e. Even  ->  ( ( 2  +  1 )  <_  n  ->  ( ( 4  <  n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
574, 56sylbid 230 . . . 4  |-  ( n  e. Even  ->  ( 2  < 
n  ->  ( (
4  <  n  ->  n  e. GoldbachEven  )  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
5857com23 86 . . 3  |-  ( n  e. Even  ->  ( ( 4  <  n  ->  n  e. GoldbachEven  )  ->  ( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
59 2lt4 11198 . . . . . . . 8  |-  2  <  4
60 2re 11090 . . . . . . . . . 10  |-  2  e.  RR
6160a1i 11 . . . . . . . . 9  |-  ( n  e. Even  ->  2  e.  RR )
62 lttr 10114 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  4  e.  RR  /\  n  e.  RR )  ->  (
( 2  <  4  /\  4  <  n )  ->  2  <  n
) )
6361, 17, 9, 62syl3anc 1326 . . . . . . . 8  |-  ( n  e. Even  ->  ( ( 2  <  4  /\  4  <  n )  ->  2  <  n ) )
6459, 63mpani 712 . . . . . . 7  |-  ( n  e. Even  ->  ( 4  < 
n  ->  2  <  n ) )
6564imp 445 . . . . . 6  |-  ( ( n  e. Even  /\  4  <  n )  ->  2  <  n )
66 simpll 790 . . . . . . . . 9  |-  ( ( ( n  e. Even  /\  4  <  n )  /\  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )  ->  n  e. Even  )
67 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e. Even  /\  4  <  n )  /\  p  e.  Prime )  ->  p  e.  Prime )
6867anim1i 592 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e. Even  /\  4  <  n )  /\  p  e.  Prime )  /\  q  e.  Prime )  ->  ( p  e. 
Prime  /\  q  e.  Prime ) )
6968adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( n  e. Even  /\  4  <  n )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  n  =  ( p  +  q ) )  -> 
( p  e.  Prime  /\  q  e.  Prime )
)
70 simpll 790 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e. Even  /\  4  <  n )  /\  p  e.  Prime )  /\  q  e.  Prime )  ->  ( n  e. Even  /\  4  <  n ) )
7170anim1i 592 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( n  e. Even  /\  4  <  n )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  n  =  ( p  +  q ) )  -> 
( ( n  e. Even  /\  4  <  n )  /\  n  =  ( p  +  q ) ) )
72 df-3an 1039 . . . . . . . . . . . . . . . 16  |-  ( ( n  e. Even  /\  4  <  n  /\  n  =  ( p  +  q ) )  <->  ( (
n  e. Even  /\  4  <  n )  /\  n  =  ( p  +  q ) ) )
7371, 72sylibr 224 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( n  e. Even  /\  4  <  n )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  n  =  ( p  +  q ) )  -> 
( n  e. Even  /\  4  <  n  /\  n  =  ( p  +  q ) ) )
74 sbgoldbaltlem2 41668 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  (
( n  e. Even  /\  4  <  n  /\  n  =  ( p  +  q ) )  -> 
( p  e. Odd  /\  q  e. Odd  ) )
)
7569, 73, 74sylc 65 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( n  e. Even  /\  4  <  n )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  n  =  ( p  +  q ) )  -> 
( p  e. Odd  /\  q  e. Odd  ) )
76 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( n  e. Even  /\  4  <  n )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  n  =  ( p  +  q ) )  ->  n  =  ( p  +  q ) )
77 df-3an 1039 . . . . . . . . . . . . . 14  |-  ( ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) )  <->  ( ( p  e. Odd  /\  q  e. Odd  )  /\  n  =  ( p  +  q ) ) )
7875, 76, 77sylanbrc 698 . . . . . . . . . . . . 13  |-  ( ( ( ( ( n  e. Even  /\  4  <  n )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  n  =  ( p  +  q ) )  -> 
( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) ) )
7978ex 450 . . . . . . . . . . . 12  |-  ( ( ( ( n  e. Even  /\  4  <  n )  /\  p  e.  Prime )  /\  q  e.  Prime )  ->  ( n  =  ( p  +  q )  ->  ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) ) ) )
8079reximdva 3017 . . . . . . . . . . 11  |-  ( ( ( n  e. Even  /\  4  <  n )  /\  p  e.  Prime )  -> 
( E. q  e. 
Prime  n  =  (
p  +  q )  ->  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) ) ) )
8180reximdva 3017 . . . . . . . . . 10  |-  ( ( n  e. Even  /\  4  <  n )  ->  ( E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q )  ->  E. p  e.  Prime  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) ) ) )
8281imp 445 . . . . . . . . 9  |-  ( ( ( n  e. Even  /\  4  <  n )  /\  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )  ->  E. p  e.  Prime  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) ) )
8366, 82jca 554 . . . . . . . 8  |-  ( ( ( n  e. Even  /\  4  <  n )  /\  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )  ->  ( n  e. Even  /\  E. p  e. 
Prime  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) ) ) )
8483ex 450 . . . . . . 7  |-  ( ( n  e. Even  /\  4  <  n )  ->  ( E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q )  ->  (
n  e. Even  /\  E. p  e.  Prime  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  n  =  ( p  +  q ) ) ) ) )
8584, 20syl6ibr 242 . . . . . 6  |-  ( ( n  e. Even  /\  4  <  n )  ->  ( E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q )  ->  n  e. GoldbachEven  ) )
8665, 85embantd 59 . . . . 5  |-  ( ( n  e. Even  /\  4  <  n )  ->  (
( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )  ->  n  e. GoldbachEven  ) )
8786ex 450 . . . 4  |-  ( n  e. Even  ->  ( 4  < 
n  ->  ( (
2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )  ->  n  e. GoldbachEven  ) ) )
8887com23 86 . . 3  |-  ( n  e. Even  ->  ( ( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )  -> 
( 4  <  n  ->  n  e. GoldbachEven  ) ) )
8958, 88impbid 202 . 2  |-  ( n  e. Even  ->  ( ( 4  <  n  ->  n  e. GoldbachEven  )  <->  ( 2  < 
n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) ) )
9089ralbiia 2979 1  |-  ( A. n  e. Even  ( 4  <  n  ->  n  e. GoldbachEven  )  <->  A. n  e. Even  ( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   2c2 11070   3c3 11071   4c4 11072   ZZcz 11377   Primecprime 15385   Even ceven 41537   Odd codd 41538   GoldbachEven cgbe 41633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-even 41539  df-odd 41540  df-gbe 41636
This theorem is referenced by:  sbgoldbb  41670  sbgoldbmb  41674
  Copyright terms: Public domain W3C validator