Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iunmpt Structured version   Visualization version   GIF version

Theorem sge0iunmpt 40635
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iunmpt.a (𝜑𝐴𝑉)
sge0iunmpt.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iunmpt.dj (𝜑Disj 𝑥𝐴 𝐵)
sge0iunmpt.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0iunmpt (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝑥,𝐶   𝑥,𝑊   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑥,𝑘)   𝑊(𝑘)

Proof of Theorem sge0iunmpt
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . 4 𝑥𝜑
2 nfcv 2764 . . . . . 6 𝑥Σ^
3 nfiu1 4550 . . . . . . 7 𝑥 𝑥𝐴 𝐵
4 nfcv 2764 . . . . . . 7 𝑥𝐶
53, 4nfmpt 4746 . . . . . 6 𝑥(𝑘 𝑥𝐴 𝐵𝐶)
62, 5nffv 6198 . . . . 5 𝑥^‘(𝑘 𝑥𝐴 𝐵𝐶))
7 nfmpt1 4747 . . . . . 6 𝑥(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
82, 7nffv 6198 . . . . 5 𝑥^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
96, 8nfeq 2776 . . . 4 𝑥^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
10 sge0iunmpt.a . . . . . . . . . 10 (𝜑𝐴𝑉)
11 sge0iunmpt.b . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵𝑊)
1211ralrimiva 2966 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
13 iunexg 7143 . . . . . . . . . 10 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
1410, 12, 13syl2anc 693 . . . . . . . . 9 (𝜑 𝑥𝐴 𝐵 ∈ V)
15 eliun 4524 . . . . . . . . . . . . 13 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
1615biimpi 206 . . . . . . . . . . . 12 (𝑘 𝑥𝐴 𝐵 → ∃𝑥𝐴 𝑘𝐵)
1716adantl 482 . . . . . . . . . . 11 ((𝜑𝑘 𝑥𝐴 𝐵) → ∃𝑥𝐴 𝑘𝐵)
18 nfcv 2764 . . . . . . . . . . . . . 14 𝑥𝑘
1918, 3nfel 2777 . . . . . . . . . . . . 13 𝑥 𝑘 𝑥𝐴 𝐵
201, 19nfan 1828 . . . . . . . . . . . 12 𝑥(𝜑𝑘 𝑥𝐴 𝐵)
214nfel1 2779 . . . . . . . . . . . 12 𝑥 𝐶 ∈ (0[,]+∞)
22 sge0iunmpt.c . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
23223exp 1264 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,]+∞))))
2423adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘 𝑥𝐴 𝐵) → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,]+∞))))
2520, 21, 24rexlimd 3026 . . . . . . . . . . 11 ((𝜑𝑘 𝑥𝐴 𝐵) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ (0[,]+∞)))
2617, 25mpd 15 . . . . . . . . . 10 ((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
27 eqid 2622 . . . . . . . . . 10 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑘 𝑥𝐴 𝐵𝐶)
2826, 27fmptd 6385 . . . . . . . . 9 (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
2914, 28sge0xrcl 40602 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
30293ad2ant1 1082 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
31 id 22 . . . . . . . . . . 11 ((Σ^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘𝐵𝐶)) = +∞)
3231eqcomd 2628 . . . . . . . . . 10 ((Σ^‘(𝑘𝐵𝐶)) = +∞ → +∞ = (Σ^‘(𝑘𝐵𝐶)))
3332adantl 482 . . . . . . . . 9 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐵𝐶)))
34333adant1 1079 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐵𝐶)))
3514adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴 𝐵 ∈ V)
3626adantlr 751 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
37 ssiun2 4563 . . . . . . . . . . 11 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
3837adantl 482 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
3935, 36, 38sge0lessmpt 40616 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
40393adant3 1081 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
4134, 40eqbrtrd 4675 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
4230, 41xrgepnfd 39547 . . . . . 6 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = +∞)
43103ad2ant1 1082 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → 𝐴𝑉)
44 nfv 1843 . . . . . . . . . . . . 13 𝑥(𝜑𝑦𝐴)
45 nfcsb1v 3549 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
46 nfcsb1v 3549 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝑊
4745, 46nfel 2777 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊
4844, 47nfim 1825 . . . . . . . . . . . 12 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
49 eleq1 2689 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
5049anbi2d 740 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
51 csbeq1a 3542 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
52 csbeq1a 3542 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝑊 = 𝑦 / 𝑥𝑊)
5351, 52eleq12d 2695 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐵𝑊𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊))
5450, 53imbi12d 334 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑊) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)))
5548, 54, 11chvar 2262 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
5655adantlr 751 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝑊)
5745, 4nfmpt 4746 . . . . . . . . . . . . . 14 𝑥(𝑘𝑦 / 𝑥𝐵𝐶)
58 nfcv 2764 . . . . . . . . . . . . . 14 𝑥(0[,]+∞)
5957, 45, 58nff 6041 . . . . . . . . . . . . 13 𝑥(𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞)
6044, 59nfim 1825 . . . . . . . . . . . 12 𝑥((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6151mpteq1d 4738 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑘𝐵𝐶) = (𝑘𝑦 / 𝑥𝐵𝐶))
6261, 51feq12d 6033 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑘𝐵𝐶):𝐵⟶(0[,]+∞) ↔ (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞)))
6350, 62imbi12d 334 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞)) ↔ ((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))))
6423imp31 448 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
65 eqid 2622 . . . . . . . . . . . . 13 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
6664, 65fmptd 6385 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
6760, 63, 66chvar 2262 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6867adantlr 751 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → (𝑘𝑦 / 𝑥𝐵𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
6956, 68sge0cl 40598 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)) ∈ (0[,]+∞))
70 nfcv 2764 . . . . . . . . . 10 𝑦^‘(𝑘𝐵𝐶))
712, 57nffv 6198 . . . . . . . . . 10 𝑥^‘(𝑘𝑦 / 𝑥𝐵𝐶))
7261fveq2d 6195 . . . . . . . . . 10 (𝑥 = 𝑦 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)))
7370, 71, 72cbvmpt 4749 . . . . . . . . 9 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑦𝐴 ↦ (Σ^‘(𝑘𝑦 / 𝑥𝐵𝐶)))
7469, 73fmptd 6385 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
75743adant3 1081 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
76 id 22 . . . . . . . . . . 11 (𝑥𝐴𝑥𝐴)
77 fvexd 6203 . . . . . . . . . . 11 (𝑥𝐴 → (Σ^‘(𝑘𝐵𝐶)) ∈ V)
78 eqid 2622 . . . . . . . . . . . 12 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
7978elrnmpt1 5374 . . . . . . . . . . 11 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) ∈ V) → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8076, 77, 79syl2anc 693 . . . . . . . . . 10 (𝑥𝐴 → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8180adantr 481 . . . . . . . . 9 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘𝐵𝐶)) ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8233, 81eqeltrd 2701 . . . . . . . 8 ((𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
83823adant1 1079 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → +∞ ∈ ran (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
8443, 75, 83sge0pnfval 40590 . . . . . 6 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = +∞)
8542, 84eqtr4d 2659 . . . . 5 ((𝜑𝑥𝐴 ∧ (Σ^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
86853exp 1264 . . . 4 (𝜑 → (𝑥𝐴 → ((Σ^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))))
871, 9, 86rexlimd 3026 . . 3 (𝜑 → (∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞ → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))))
8887imp 445 . 2 ((𝜑 ∧ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
89 simpl 473 . . 3 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → 𝜑)
90 ralnex 2992 . . . . 5 (∀𝑥𝐴 ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞)
91 df-ne 2795 . . . . . . 7 ((Σ^‘(𝑘𝐵𝐶)) ≠ +∞ ↔ ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞)
9291bicomi 214 . . . . . 6 (¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ (Σ^‘(𝑘𝐵𝐶)) ≠ +∞)
9392ralbii 2980 . . . . 5 (∀𝑥𝐴 ¬ (Σ^‘(𝑘𝐵𝐶)) = +∞ ↔ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9490, 93sylbb1 227 . . . 4 (¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞ → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9594adantl 482 . . 3 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
9610adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝐴𝑉)
97 nfcv 2764 . . . . . . . . 9 𝑥𝑊
9845, 97nfel 2777 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵𝑊
9944, 98nfim 1825 . . . . . . 7 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
10051eleq1d 2686 . . . . . . . 8 (𝑥 = 𝑦 → (𝐵𝑊𝑦 / 𝑥𝐵𝑊))
10150, 100imbi12d 334 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑊) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)))
10299, 101, 11chvar 2262 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
103102adantlr 751 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → 𝑦 / 𝑥𝐵𝑊)
104 sge0iunmpt.dj . . . . . . 7 (𝜑Disj 𝑥𝐴 𝐵)
105 nfcv 2764 . . . . . . . 8 𝑦𝐵
106105, 45, 51cbvdisj 4630 . . . . . . 7 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
107104, 106sylib 208 . . . . . 6 (𝜑Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
108107adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
109 nfv 1843 . . . . . . . 8 𝑘(𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵)
110 nfcsb1v 3549 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐶
111110nfel1 2779 . . . . . . . 8 𝑘𝑗 / 𝑘𝐶 ∈ (0[,]+∞)
112109, 111nfim 1825 . . . . . . 7 𝑘((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
113 eleq1 2689 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑦 / 𝑥𝐵𝑗𝑦 / 𝑥𝐵))
1141133anbi3d 1405 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) ↔ (𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵)))
115 csbeq1a 3542 . . . . . . . . 9 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
116115eleq1d 2686 . . . . . . . 8 (𝑘 = 𝑗 → (𝐶 ∈ (0[,]+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,]+∞)))
117114, 116imbi12d 334 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
118 nfv 1843 . . . . . . . . . 10 𝑥 𝑦𝐴
11918, 45nfel 2777 . . . . . . . . . 10 𝑥 𝑘𝑦 / 𝑥𝐵
1201, 118, 119nf3an 1831 . . . . . . . . 9 𝑥(𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)
121120, 21nfim 1825 . . . . . . . 8 𝑥((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
12251eleq2d 2687 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑘𝐵𝑘𝑦 / 𝑥𝐵))
12349, 1223anbi23d 1402 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)))
124123imbi1d 331 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))))
125121, 124, 22chvar 2262 . . . . . . 7 ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
126112, 117, 125chvar 2262 . . . . . 6 ((𝜑𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
1271263adant1r 1319 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
128 simpr 477 . . . . . . . . 9 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → 𝑦𝐴)
129 simpl 473 . . . . . . . . 9 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
130 simpl 473 . . . . . . . . . 10 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝑦𝐴)
131 simpr 477 . . . . . . . . . 10 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞)
132 nfcv 2764 . . . . . . . . . . . . . 14 𝑥𝑗 / 𝑘𝐶
13345, 132nfmpt 4746 . . . . . . . . . . . . 13 𝑥(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
1342, 133nffv 6198 . . . . . . . . . . . 12 𝑥^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
135 nfcv 2764 . . . . . . . . . . . 12 𝑥+∞
136134, 135nfne 2894 . . . . . . . . . . 11 𝑥^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞
137 nfcv 2764 . . . . . . . . . . . . . . . 16 𝑗𝐶
138137, 110, 115cbvmpt 4749 . . . . . . . . . . . . . . 15 (𝑘𝑦 / 𝑥𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
139138a1i 11 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑘𝑦 / 𝑥𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
14061, 139eqtrd 2656 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑘𝐵𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
141140fveq2d 6195 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
142141neeq1d 2853 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((Σ^‘(𝑘𝐵𝐶)) ≠ +∞ ↔ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞))
143136, 142rspc 3303 . . . . . . . . . 10 (𝑦𝐴 → (∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞))
144130, 131, 143sylc 65 . . . . . . . . 9 ((𝑦𝐴 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞)
145128, 129, 144syl2anc 693 . . . . . . . 8 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ≠ +∞)
146145neneqd 2799 . . . . . . 7 ((∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞ ∧ 𝑦𝐴) → ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞)
147146adantll 750 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞)
1481263expa 1265 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑗𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
149 eqid 2622 . . . . . . . . 9 (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶) = (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
150148, 149fmptd 6385 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
151150adantlr 751 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶):𝑦 / 𝑥𝐵⟶(0[,]+∞))
152103, 151sge0repnf 40603 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → ((Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = +∞))
153147, 152mpbird 247 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) ∧ 𝑦𝐴) → (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ)
154137, 110, 115cbvmpt 4749 . . . . . . . . 9 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑗 𝑥𝐴 𝐵𝑗 / 𝑘𝐶)
155105, 45, 51cbviun 4557 . . . . . . . . . 10 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
156155mpteq1i 4739 . . . . . . . . 9 (𝑗 𝑥𝐴 𝐵𝑗 / 𝑘𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
157154, 156eqtri 2644 . . . . . . . 8 (𝑘 𝑥𝐴 𝐵𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
158157fveq2i 6194 . . . . . . 7 ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))
159158, 29syl5eqelr 2706 . . . . . 6 (𝜑 → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ*)
160159adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) ∈ ℝ*)
16170, 134, 141cbvmpt 4749 . . . . . . . 8 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
162161fveq2i 6194 . . . . . . 7 ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶))))
16311, 66sge0cl 40598 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,]+∞))
164163, 78fmptd 6385 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
16510, 164sge0xrcl 40602 . . . . . . 7 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
166162, 165syl5eqelr 2706 . . . . . 6 (𝜑 → (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))) ∈ ℝ*)
167166adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))) ∈ ℝ*)
168 eliun 4524 . . . . . . . . . 10 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵 ↔ ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
169168biimpi 206 . . . . . . . . 9 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵 → ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
170169adantl 482 . . . . . . . 8 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → ∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵)
171 nfv 1843 . . . . . . . . . 10 𝑦𝜑
172 nfcv 2764 . . . . . . . . . . 11 𝑦𝑗
173 nfiu1 4550 . . . . . . . . . . 11 𝑦 𝑦𝐴 𝑦 / 𝑥𝐵
174172, 173nfel 2777 . . . . . . . . . 10 𝑦 𝑗 𝑦𝐴 𝑦 / 𝑥𝐵
175171, 174nfan 1828 . . . . . . . . 9 𝑦(𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵)
176 nfv 1843 . . . . . . . . 9 𝑦𝑗 / 𝑘𝐶 ∈ (0[,]+∞)
177148exp31 630 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
178177adantr 481 . . . . . . . . 9 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → (𝑦𝐴 → (𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞))))
179175, 176, 178rexlimd 3026 . . . . . . . 8 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → (∃𝑦𝐴 𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶 ∈ (0[,]+∞)))
180170, 179mpd 15 . . . . . . 7 ((𝜑𝑗 𝑦𝐴 𝑦 / 𝑥𝐵) → 𝑗 / 𝑘𝐶 ∈ (0[,]+∞))
181 eqid 2622 . . . . . . 7 (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶) = (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)
182180, 181fmptd 6385 . . . . . 6 (𝜑 → (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶): 𝑦𝐴 𝑦 / 𝑥𝐵⟶(0[,]+∞))
183182adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶): 𝑦𝐴 𝑦 / 𝑥𝐵⟶(0[,]+∞))
184155, 14syl5eqelr 2706 . . . . . 6 (𝜑 𝑦𝐴 𝑦 / 𝑥𝐵 ∈ V)
185184adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → 𝑦𝐴 𝑦 / 𝑥𝐵 ∈ V)
18696, 103, 108, 127, 153, 160, 167, 183, 185sge0iunmptlemre 40632 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))))
187158a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑗 𝑦𝐴 𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))
188162a1i 11 . . . 4 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑦𝐴 ↦ (Σ^‘(𝑗𝑦 / 𝑥𝐵𝑗 / 𝑘𝐶)))))
189186, 187, 1883eqtr4d 2666 . . 3 ((𝜑 ∧ ∀𝑥𝐴^‘(𝑘𝐵𝐶)) ≠ +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
19089, 95, 189syl2anc 693 . 2 ((𝜑 ∧ ¬ ∃𝑥𝐴^‘(𝑘𝐵𝐶)) = +∞) → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
19188, 190pm2.61dan 832 1 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  csb 3533  wss 3574   ciun 4520  Disj wdisj 4620   class class class wbr 4653  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  +∞cpnf 10071  *cxr 10073  cle 10075  [,]cicc 12178  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0iun  40636  sge0xp  40646
  Copyright terms: Public domain W3C validator