Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem8 Structured version   Visualization version   GIF version

Theorem smflimsuplem8 41033
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem8.m (𝜑𝑀 ∈ ℤ)
smflimsuplem8.z 𝑍 = (ℤ𝑀)
smflimsuplem8.s (𝜑𝑆 ∈ SAlg)
smflimsuplem8.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem8.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smflimsuplem8.g 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimsuplem8.e 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem8.h 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem8 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝑘   𝐷,𝑘,𝑚,𝑛   𝑘,𝐸,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝑘,𝐻,𝑚,𝑛,𝑥   𝑚,𝑀   𝑆,𝑘,𝑛   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝑆(𝑥,𝑚)   𝐸(𝑚,𝑛)   𝐺(𝑥,𝑘,𝑚,𝑛)   𝑀(𝑥,𝑘,𝑛)

Proof of Theorem smflimsuplem8
Dummy variables 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimsuplem8.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
3 smflimsuplem8.m . . . . 5 (𝜑𝑀 ∈ ℤ)
4 smflimsuplem8.z . . . . 5 𝑍 = (ℤ𝑀)
5 smflimsuplem8.s . . . . 5 (𝜑𝑆 ∈ SAlg)
6 smflimsuplem8.f . . . . 5 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
7 smflimsuplem8.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
8 smflimsuplem8.e . . . . 5 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
9 smflimsuplem8.h . . . . 5 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
103, 4, 5, 6, 7, 8, 9smflimsuplem7 41032 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
11 rabidim1 3117 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
12 eliun 4524 . . . . . . . 8 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1311, 12sylib 208 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1413, 7eleq2s 2719 . . . . . 6 (𝑥𝐷 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1514adantl 482 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
16 nfv 1843 . . . . . 6 𝑛(𝜑𝑥𝐷)
17 nfv 1843 . . . . . 6 𝑛(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))
18 nfv 1843 . . . . . . . . . . 11 𝑘((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
19 nfv 1843 . . . . . . . . . . . 12 𝑚(𝜑𝑥𝐷)
20 nfv 1843 . . . . . . . . . . . 12 𝑚 𝑛𝑍
21 nfcv 2764 . . . . . . . . . . . . 13 𝑚𝑥
22 nfii1 4551 . . . . . . . . . . . . 13 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2321, 22nfel 2777 . . . . . . . . . . . 12 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2419, 20, 23nf3an 1831 . . . . . . . . . . 11 𝑚((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
253adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝑀 ∈ ℤ)
26253ad2ant1 1082 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑀 ∈ ℤ)
275adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝑆 ∈ SAlg)
28273ad2ant1 1082 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑆 ∈ SAlg)
296adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝐹:𝑍⟶(SMblFn‘𝑆))
30293ad2ant1 1082 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
31 rabidim2 39284 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
3231, 7eleq2s 2719 . . . . . . . . . . . . . . 15 (𝑥𝐷 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
33 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑦 → (𝐹𝑚) = (𝐹𝑦))
3433fveq1d 6193 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑦)‘𝑥))
3534cbvmptv 4750 . . . . . . . . . . . . . . . . . 18 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑦𝑍 ↦ ((𝐹𝑦)‘𝑥))
36 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
3736fveq1d 6193 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → ((𝐹𝑧)‘𝑥) = ((𝐹𝑦)‘𝑥))
3837cbvmptv 4750 . . . . . . . . . . . . . . . . . 18 (𝑧𝑍 ↦ ((𝐹𝑧)‘𝑥)) = (𝑦𝑍 ↦ ((𝐹𝑦)‘𝑥))
39 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
4039fveq1d 6193 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑤 → ((𝐹𝑧)‘𝑥) = ((𝐹𝑤)‘𝑥))
4140cbvmptv 4750 . . . . . . . . . . . . . . . . . 18 (𝑧𝑍 ↦ ((𝐹𝑧)‘𝑥)) = (𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))
4235, 38, 413eqtr2i 2650 . . . . . . . . . . . . . . . . 17 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))
4342fveq2i 6194 . . . . . . . . . . . . . . . 16 (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥)))
4443eleq1i 2692 . . . . . . . . . . . . . . 15 ((lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4532, 44sylib 208 . . . . . . . . . . . . . 14 (𝑥𝐷 → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4645adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑥𝐷) → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
47463ad2ant1 1082 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4847, 44sylibr 224 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
49 simp2 1062 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛𝑍)
50 simp3 1063 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
5118, 24, 26, 4, 28, 30, 8, 9, 48, 49, 50smflimsuplem5 41030 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘 ∈ (ℤ𝑛) ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))))
52 fvexd 6203 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ∈ V)
534fvexi 6202 . . . . . . . . . . . 12 𝑍 ∈ V
5453a1i 11 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑍 ∈ V)
554, 49eluzelz2d 39640 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ ℤ)
56 eqid 2622 . . . . . . . . . . 11 (ℤ𝑛) = (ℤ𝑛)
5755uzidd 39631 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ (ℤ𝑛))
5857uzssd 39634 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ (ℤ𝑛))
594, 49uzssd2 39644 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ 𝑍)
60 fvexd 6203 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘)‘𝑥) ∈ V)
6118, 52, 54, 55, 56, 58, 59, 60climeqmpt 39929 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ((𝑘 ∈ (ℤ𝑛) ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) ↔ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))))
6251, 61mpbid 222 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))))
63 simp1l 1085 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝜑)
64 nfv 1843 . . . . . . . . . . . 12 𝑚𝜑
6564, 20nfan 1828 . . . . . . . . . . 11 𝑚(𝜑𝑛𝑍)
664eluzelz2 39627 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ ℤ)
6766adantl 482 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
683adantr 481 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
69 fvexd 6203 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑥) ∈ V)
70 fvexd 6203 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
7165, 67, 68, 56, 4, 69, 70limsupequzmpt 39961 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7263, 49, 71syl2anc 693 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7362, 72breqtrd 4679 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7473climfvd 39930 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))
75743exp 1264 . . . . . 6 ((𝜑𝑥𝐷) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))))
7616, 17, 75rexlimd 3026 . . . . 5 ((𝜑𝑥𝐷) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
7715, 76mpd 15 . . . 4 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))
7810, 77mpteq12dva 4732 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
792, 78eqtrd 2656 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
803, 4, 5, 6, 8, 9smflimsuplem3 41028 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))) ∈ (SMblFn‘𝑆))
8179, 80eqeltrd 2701 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  Vcvv 3200   ciun 4520   ciin 4521   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  wf 5884  cfv 5888  supcsup 8346  cr 9935  *cxr 10073   < clt 10074  cz 11377  cuz 11687  lim supclsp 14201  cli 14215  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ioc 12180  df-ico 12181  df-fz 12327  df-fl 12593  df-ceil 12594  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-rest 16083  df-topgen 16104  df-top 20699  df-bases 20750  df-salg 40529  df-salgen 40533  df-smblfn 40910
This theorem is referenced by:  smflimsup  41034
  Copyright terms: Public domain W3C validator