| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smflimsuplem8 | Structured version Visualization version Unicode version | ||
| Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| smflimsuplem8.m |
|
| smflimsuplem8.z |
|
| smflimsuplem8.s |
|
| smflimsuplem8.f |
|
| smflimsuplem8.d |
|
| smflimsuplem8.g |
|
| smflimsuplem8.e |
|
| smflimsuplem8.h |
|
| Ref | Expression |
|---|---|
| smflimsuplem8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smflimsuplem8.g |
. . . 4
| |
| 2 | 1 | a1i 11 |
. . 3
|
| 3 | smflimsuplem8.m |
. . . . 5
| |
| 4 | smflimsuplem8.z |
. . . . 5
| |
| 5 | smflimsuplem8.s |
. . . . 5
| |
| 6 | smflimsuplem8.f |
. . . . 5
| |
| 7 | smflimsuplem8.d |
. . . . 5
| |
| 8 | smflimsuplem8.e |
. . . . 5
| |
| 9 | smflimsuplem8.h |
. . . . 5
| |
| 10 | 3, 4, 5, 6, 7, 8, 9 | smflimsuplem7 41032 |
. . . 4
|
| 11 | rabidim1 3117 |
. . . . . . . 8
| |
| 12 | eliun 4524 |
. . . . . . . 8
| |
| 13 | 11, 12 | sylib 208 |
. . . . . . 7
|
| 14 | 13, 7 | eleq2s 2719 |
. . . . . 6
|
| 15 | 14 | adantl 482 |
. . . . 5
|
| 16 | nfv 1843 |
. . . . . 6
| |
| 17 | nfv 1843 |
. . . . . 6
| |
| 18 | nfv 1843 |
. . . . . . . . . . 11
| |
| 19 | nfv 1843 |
. . . . . . . . . . . 12
| |
| 20 | nfv 1843 |
. . . . . . . . . . . 12
| |
| 21 | nfcv 2764 |
. . . . . . . . . . . . 13
| |
| 22 | nfii1 4551 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | nfel 2777 |
. . . . . . . . . . . 12
|
| 24 | 19, 20, 23 | nf3an 1831 |
. . . . . . . . . . 11
|
| 25 | 3 | adantr 481 |
. . . . . . . . . . . 12
|
| 26 | 25 | 3ad2ant1 1082 |
. . . . . . . . . . 11
|
| 27 | 5 | adantr 481 |
. . . . . . . . . . . 12
|
| 28 | 27 | 3ad2ant1 1082 |
. . . . . . . . . . 11
|
| 29 | 6 | adantr 481 |
. . . . . . . . . . . 12
|
| 30 | 29 | 3ad2ant1 1082 |
. . . . . . . . . . 11
|
| 31 | rabidim2 39284 |
. . . . . . . . . . . . . . . 16
| |
| 32 | 31, 7 | eleq2s 2719 |
. . . . . . . . . . . . . . 15
|
| 33 | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 34 | 33 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . 19
|
| 35 | 34 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . 18
|
| 36 | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 37 | 36 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . 19
|
| 38 | 37 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . 18
|
| 39 | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 40 | 39 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . 19
|
| 41 | 40 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . 18
|
| 42 | 35, 38, 41 | 3eqtr2i 2650 |
. . . . . . . . . . . . . . . . 17
|
| 43 | 42 | fveq2i 6194 |
. . . . . . . . . . . . . . . 16
|
| 44 | 43 | eleq1i 2692 |
. . . . . . . . . . . . . . 15
|
| 45 | 32, 44 | sylib 208 |
. . . . . . . . . . . . . 14
|
| 46 | 45 | adantl 482 |
. . . . . . . . . . . . 13
|
| 47 | 46 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
|
| 48 | 47, 44 | sylibr 224 |
. . . . . . . . . . 11
|
| 49 | simp2 1062 |
. . . . . . . . . . 11
| |
| 50 | simp3 1063 |
. . . . . . . . . . 11
| |
| 51 | 18, 24, 26, 4, 28, 30, 8, 9, 48, 49, 50 | smflimsuplem5 41030 |
. . . . . . . . . 10
|
| 52 | fvexd 6203 |
. . . . . . . . . . 11
| |
| 53 | 4 | fvexi 6202 |
. . . . . . . . . . . 12
|
| 54 | 53 | a1i 11 |
. . . . . . . . . . 11
|
| 55 | 4, 49 | eluzelz2d 39640 |
. . . . . . . . . . 11
|
| 56 | eqid 2622 |
. . . . . . . . . . 11
| |
| 57 | 55 | uzidd 39631 |
. . . . . . . . . . . 12
|
| 58 | 57 | uzssd 39634 |
. . . . . . . . . . 11
|
| 59 | 4, 49 | uzssd2 39644 |
. . . . . . . . . . 11
|
| 60 | fvexd 6203 |
. . . . . . . . . . 11
| |
| 61 | 18, 52, 54, 55, 56, 58, 59, 60 | climeqmpt 39929 |
. . . . . . . . . 10
|
| 62 | 51, 61 | mpbid 222 |
. . . . . . . . 9
|
| 63 | simp1l 1085 |
. . . . . . . . . 10
| |
| 64 | nfv 1843 |
. . . . . . . . . . . 12
| |
| 65 | 64, 20 | nfan 1828 |
. . . . . . . . . . 11
|
| 66 | 4 | eluzelz2 39627 |
. . . . . . . . . . . 12
|
| 67 | 66 | adantl 482 |
. . . . . . . . . . 11
|
| 68 | 3 | adantr 481 |
. . . . . . . . . . 11
|
| 69 | fvexd 6203 |
. . . . . . . . . . 11
| |
| 70 | fvexd 6203 |
. . . . . . . . . . 11
| |
| 71 | 65, 67, 68, 56, 4, 69, 70 | limsupequzmpt 39961 |
. . . . . . . . . 10
|
| 72 | 63, 49, 71 | syl2anc 693 |
. . . . . . . . 9
|
| 73 | 62, 72 | breqtrd 4679 |
. . . . . . . 8
|
| 74 | 73 | climfvd 39930 |
. . . . . . 7
|
| 75 | 74 | 3exp 1264 |
. . . . . 6
|
| 76 | 16, 17, 75 | rexlimd 3026 |
. . . . 5
|
| 77 | 15, 76 | mpd 15 |
. . . 4
|
| 78 | 10, 77 | mpteq12dva 4732 |
. . 3
|
| 79 | 2, 78 | eqtrd 2656 |
. 2
|
| 80 | 3, 4, 5, 6, 8, 9 | smflimsuplem3 41028 |
. 2
|
| 81 | 79, 80 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cc 9257 ax-ac2 9285 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-ac 8939 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-ioo 12179 df-ioc 12180 df-ico 12181 df-fz 12327 df-fl 12593 df-ceil 12594 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-rest 16083 df-topgen 16104 df-top 20699 df-bases 20750 df-salg 40529 df-salgen 40533 df-smblfn 40910 |
| This theorem is referenced by: smflimsup 41034 |
| Copyright terms: Public domain | W3C validator |