Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem3 Structured version   Visualization version   GIF version

Theorem smflimsuplem3 41028
Description: The limit of the (𝐻𝑛) functions is sigma-measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem3.m (𝜑𝑀 ∈ ℤ)
smflimsuplem3.z 𝑍 = (ℤ𝑀)
smflimsuplem3.s (𝜑𝑆 ∈ SAlg)
smflimsuplem3.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem3.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem3.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem3 (𝜑 → (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝑘   𝑥,𝐸   𝑚,𝐹,𝑥   𝑘,𝐻,𝑥   𝑆,𝑘,𝑛   𝑘,𝑍,𝑛,𝑥   𝑚,𝑍,𝑛   𝜑,𝑘,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝑆(𝑥,𝑚)   𝐸(𝑘,𝑚,𝑛)   𝐹(𝑘,𝑛)   𝐻(𝑚,𝑛)   𝑀(𝑥,𝑘,𝑚,𝑛)

Proof of Theorem smflimsuplem3
StepHypRef Expression
1 nfv 1843 . 2 𝑛𝜑
2 nfv 1843 . 2 𝑥𝜑
3 nfv 1843 . 2 𝑘𝜑
4 smflimsuplem3.m . 2 (𝜑𝑀 ∈ ℤ)
5 smflimsuplem3.z . 2 𝑍 = (ℤ𝑀)
6 fvex 6201 . . . 4 (𝐻𝑛) ∈ V
76dmex 7099 . . 3 dom (𝐻𝑛) ∈ V
87a1i 11 . 2 ((𝜑𝑛𝑍) → dom (𝐻𝑛) ∈ V)
9 fvexd 6203 . 2 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐻𝑛)) → ((𝐻𝑛)‘𝑥) ∈ V)
10 smflimsuplem3.s . 2 (𝜑𝑆 ∈ SAlg)
1110adantr 481 . . . . . 6 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
12 nfv 1843 . . . . . . . . . 10 𝑥(𝜑𝑛𝑍)
13 nfcv 2764 . . . . . . . . . 10 𝑥(𝐸𝑛)
14 nfrab1 3122 . . . . . . . . . 10 𝑥{𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
15 smflimsuplem3.e . . . . . . . . . . . . 13 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1615a1i 11 . . . . . . . . . . . 12 (𝜑𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}))
17 eqid 2622 . . . . . . . . . . . . 13 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
185eluzelz2 39627 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ ℤ)
19 eqid 2622 . . . . . . . . . . . . . . . 16 (ℤ𝑛) = (ℤ𝑛)
2018, 19uzn0d 39652 . . . . . . . . . . . . . . 15 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
21 fvex 6201 . . . . . . . . . . . . . . . . . 18 (𝐹𝑚) ∈ V
2221dmex 7099 . . . . . . . . . . . . . . . . 17 dom (𝐹𝑚) ∈ V
2322rgenw 2924 . . . . . . . . . . . . . . . 16 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
2423a1i 11 . . . . . . . . . . . . . . 15 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2520, 24iinexd 39318 . . . . . . . . . . . . . 14 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2625adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
2717, 26rabexd 4814 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
2816, 27fvmpt2d 6293 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
29 fvres 6207 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑛) → ((𝐹 ↾ (ℤ𝑛))‘𝑚) = (𝐹𝑚))
3029eqcomd 2628 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ𝑛) → (𝐹𝑚) = ((𝐹 ↾ (ℤ𝑛))‘𝑚))
3130adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) = ((𝐹 ↾ (ℤ𝑛))‘𝑚))
3231dmeqd 5326 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝐹𝑚) = dom ((𝐹 ↾ (ℤ𝑛))‘𝑚))
3332iineq2dv 4543 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚))
3433eleq2d 2687 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚)))
3530fveq1d 6193 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑛) → ((𝐹𝑚)‘𝑥) = (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3635mpteq2ia 4740 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3736rneqi 5352 . . . . . . . . . . . . . . . 16 ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥))
3837supeq1i 8353 . . . . . . . . . . . . . . 15 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )
3938a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ))
4039eleq1d 2686 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
4134, 40anbi12d 747 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)))
4241rabbidva2 3186 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
4328, 42eqtrd 2656 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
4412, 13, 14, 43, 39mpteq12df 4735 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )))
45 nfcv 2764 . . . . . . . . . 10 𝑚(𝐹 ↾ (ℤ𝑛))
46 nfcv 2764 . . . . . . . . . 10 𝑥(𝐹 ↾ (ℤ𝑛))
4718adantl 482 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
48 smflimsuplem3.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
4948adantr 481 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶(SMblFn‘𝑆))
505eleq2i 2693 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
5150biimpi 206 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
52 uzss 11708 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (ℤ𝑛) ⊆ (ℤ𝑀))
5351, 52syl 17 . . . . . . . . . . . . 13 (𝑛𝑍 → (ℤ𝑛) ⊆ (ℤ𝑀))
5453, 5syl6sseqr 3652 . . . . . . . . . . . 12 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
5554adantl 482 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
5649, 55fssresd 6071 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)):(ℤ𝑛)⟶(SMblFn‘𝑆))
57 eqid 2622 . . . . . . . . . 10 {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
58 eqid 2622 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ))
5945, 46, 47, 19, 11, 56, 57, 58smfsupxr 41022 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom ((𝐹 ↾ (ℤ𝑛))‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (((𝐹 ↾ (ℤ𝑛))‘𝑚)‘𝑥)), ℝ*, < )) ∈ (SMblFn‘𝑆))
6044, 59eqeltrd 2701 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ (SMblFn‘𝑆))
61 smflimsuplem3.h . . . . . . . 8 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
6260, 61fmptd 6385 . . . . . . 7 (𝜑𝐻:𝑍⟶(SMblFn‘𝑆))
6362ffvelrnda 6359 . . . . . 6 ((𝜑𝑛𝑍) → (𝐻𝑛) ∈ (SMblFn‘𝑆))
64 eqid 2622 . . . . . 6 dom (𝐻𝑛) = dom (𝐻𝑛)
6511, 63, 64smff 40941 . . . . 5 ((𝜑𝑛𝑍) → (𝐻𝑛):dom (𝐻𝑛)⟶ℝ)
6665feqmptd 6249 . . . 4 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)))
6766eqcomd 2628 . . 3 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)) = (𝐻𝑛))
6867, 63eqeltrd 2701 . 2 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐻𝑛) ↦ ((𝐻𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
69 eqid 2622 . 2 {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ }
70 eqid 2622 . 2 (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥))))
711, 2, 3, 4, 5, 8, 9, 10, 68, 69, 70smflimmpt 41016 1 (𝜑 → (𝑥 ∈ {𝑥 𝑘𝑍 𝑛 ∈ (ℤ𝑘)dom (𝐻𝑛) ∣ (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574   ciun 4520   ciin 4521  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  wf 5884  cfv 5888  supcsup 8346  cr 9935  *cxr 10073   < clt 10074  cz 11377  cuz 11687  cli 14215  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ioc 12180  df-ico 12181  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-rest 16083  df-topgen 16104  df-top 20699  df-bases 20750  df-salg 40529  df-salgen 40533  df-smblfn 40910
This theorem is referenced by:  smflimsuplem8  41033
  Copyright terms: Public domain W3C validator