| Step | Hyp | Ref
| Expression |
| 1 | | smfpimcc.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 2 | 1 | uzct 39232 |
. . . . . 6
⊢ 𝑍 ≼
ω |
| 3 | 2 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑍 ≼ ω) |
| 4 | | mptct 9360 |
. . . . 5
⊢ (𝑍 ≼ ω → (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) ≼ ω) |
| 5 | | rnct 9347 |
. . . . 5
⊢ ((𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) ≼ ω → ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) ≼ ω) |
| 6 | 3, 4, 5 | 3syl 18 |
. . . 4
⊢ (𝜑 → ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) ≼ ω) |
| 7 | | vex 3203 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 8 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) = (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) |
| 9 | 8 | elrnmpt 5372 |
. . . . . . . 8
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) ↔ ∃𝑚 ∈ 𝑍 𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})) |
| 10 | 7, 9 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) ↔ ∃𝑚 ∈ 𝑍 𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) |
| 11 | 10 | biimpi 206 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) → ∃𝑚 ∈ 𝑍 𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) |
| 12 | 11 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})) → ∃𝑚 ∈ 𝑍 𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) |
| 13 | | simp3 1063 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) → 𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) |
| 14 | | smfpimcc.s |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 15 | 14 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑆 ∈ SAlg) |
| 16 | | smfpimcc.f |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
| 17 | 16 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) |
| 18 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ dom
(𝐹‘𝑚) = dom (𝐹‘𝑚) |
| 19 | | smfpimcc.j |
. . . . . . . . . . . . 13
⊢ 𝐽 = (topGen‘ran
(,)) |
| 20 | | smfpimcc.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (SalGen‘𝐽) |
| 21 | | smfpimcc.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 22 | 21 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝐴 ∈ 𝐵) |
| 23 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (◡(𝐹‘𝑚) “ 𝐴) = (◡(𝐹‘𝑚) “ 𝐴) |
| 24 | 15, 17, 18, 19, 20, 22, 23 | smfpimbor1 41007 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (◡(𝐹‘𝑚) “ 𝐴) ∈ (𝑆 ↾t dom (𝐹‘𝑚))) |
| 25 | | fvex 6201 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹‘𝑚) ∈ V |
| 26 | 25 | dmex 7099 |
. . . . . . . . . . . . . . 15
⊢ dom
(𝐹‘𝑚) ∈ V |
| 27 | 26 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom (𝐹‘𝑚) ∈ V) |
| 28 | | elrest 16088 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ SAlg ∧ dom (𝐹‘𝑚) ∈ V) → ((◡(𝐹‘𝑚) “ 𝐴) ∈ (𝑆 ↾t dom (𝐹‘𝑚)) ↔ ∃𝑠 ∈ 𝑆 (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚)))) |
| 29 | 14, 27, 28 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((◡(𝐹‘𝑚) “ 𝐴) ∈ (𝑆 ↾t dom (𝐹‘𝑚)) ↔ ∃𝑠 ∈ 𝑆 (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚)))) |
| 30 | 29 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((◡(𝐹‘𝑚) “ 𝐴) ∈ (𝑆 ↾t dom (𝐹‘𝑚)) ↔ ∃𝑠 ∈ 𝑆 (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚)))) |
| 31 | 24, 30 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ∃𝑠 ∈ 𝑆 (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))) |
| 32 | | rabn0 3958 |
. . . . . . . . . . 11
⊢ ({𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))} ≠ ∅ ↔ ∃𝑠 ∈ 𝑆 (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))) |
| 33 | 31, 32 | sylibr 224 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))} ≠ ∅) |
| 34 | 33 | 3adant3 1081 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) → {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))} ≠ ∅) |
| 35 | 13, 34 | eqnetrd 2861 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) → 𝑦 ≠ ∅) |
| 36 | 35 | 3exp 1264 |
. . . . . . 7
⊢ (𝜑 → (𝑚 ∈ 𝑍 → (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))} → 𝑦 ≠ ∅))) |
| 37 | 36 | rexlimdv 3030 |
. . . . . 6
⊢ (𝜑 → (∃𝑚 ∈ 𝑍 𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))} → 𝑦 ≠ ∅)) |
| 38 | 37 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})) → (∃𝑚 ∈ 𝑍 𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))} → 𝑦 ≠ ∅)) |
| 39 | 12, 38 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})) → 𝑦 ≠ ∅) |
| 40 | 6, 39 | axccd2 39430 |
. . 3
⊢ (𝜑 → ∃𝑓∀𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})(𝑓‘𝑦) ∈ 𝑦) |
| 41 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑚𝜑 |
| 42 | | nfmpt1 4747 |
. . . . . . . . 9
⊢
Ⅎ𝑚(𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) |
| 43 | 42 | nfrn 5368 |
. . . . . . . 8
⊢
Ⅎ𝑚ran
(𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))}) |
| 44 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑚(𝑓‘𝑦) ∈ 𝑦 |
| 45 | 43, 44 | nfral 2945 |
. . . . . . 7
⊢
Ⅎ𝑚∀𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})(𝑓‘𝑦) ∈ 𝑦 |
| 46 | 41, 45 | nfan 1828 |
. . . . . 6
⊢
Ⅎ𝑚(𝜑 ∧ ∀𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})(𝑓‘𝑦) ∈ 𝑦) |
| 47 | | fvex 6201 |
. . . . . . 7
⊢
(ℤ≥‘𝑀) ∈ V |
| 48 | 1, 47 | eqeltri 2697 |
. . . . . 6
⊢ 𝑍 ∈ V |
| 49 | 14 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})(𝑓‘𝑦) ∈ 𝑦) → 𝑆 ∈ SAlg) |
| 50 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑓‘𝑦) = (𝑓‘𝑤)) |
| 51 | | id 22 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → 𝑦 = 𝑤) |
| 52 | 50, 51 | eleq12d 2695 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → ((𝑓‘𝑦) ∈ 𝑦 ↔ (𝑓‘𝑤) ∈ 𝑤)) |
| 53 | 52 | rspccva 3308 |
. . . . . . 7
⊢
((∀𝑦 ∈
ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})(𝑓‘𝑦) ∈ 𝑦 ∧ 𝑤 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})) → (𝑓‘𝑤) ∈ 𝑤) |
| 54 | 53 | adantll 750 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})(𝑓‘𝑦) ∈ 𝑦) ∧ 𝑤 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})) → (𝑓‘𝑤) ∈ 𝑤) |
| 55 | | eqid 2622 |
. . . . . 6
⊢ (𝑚 ∈ 𝑍 ↦ (𝑓‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})) = (𝑚 ∈ 𝑍 ↦ (𝑓‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})) |
| 56 | 46, 48, 49, 54, 55 | smfpimcclem 41013 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})(𝑓‘𝑦) ∈ 𝑦) → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑚 ∈ 𝑍 (◡(𝐹‘𝑚) “ 𝐴) = ((ℎ‘𝑚) ∩ dom (𝐹‘𝑚)))) |
| 57 | 56 | ex 450 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})(𝑓‘𝑦) ∈ 𝑦 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑚 ∈ 𝑍 (◡(𝐹‘𝑚) “ 𝐴) = ((ℎ‘𝑚) ∩ dom (𝐹‘𝑚))))) |
| 58 | 57 | exlimdv 1861 |
. . 3
⊢ (𝜑 → (∃𝑓∀𝑦 ∈ ran (𝑚 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑚))})(𝑓‘𝑦) ∈ 𝑦 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑚 ∈ 𝑍 (◡(𝐹‘𝑚) “ 𝐴) = ((ℎ‘𝑚) ∩ dom (𝐹‘𝑚))))) |
| 59 | 40, 58 | mpd 15 |
. 2
⊢ (𝜑 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑚 ∈ 𝑍 (◡(𝐹‘𝑚) “ 𝐴) = ((ℎ‘𝑚) ∩ dom (𝐹‘𝑚)))) |
| 60 | | smfpimcc.1 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝐹 |
| 61 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝑚 |
| 62 | 60, 61 | nffv 6198 |
. . . . . . . 8
⊢
Ⅎ𝑛(𝐹‘𝑚) |
| 63 | 62 | nfcnv 5301 |
. . . . . . 7
⊢
Ⅎ𝑛◡(𝐹‘𝑚) |
| 64 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑛𝐴 |
| 65 | 63, 64 | nfima 5474 |
. . . . . 6
⊢
Ⅎ𝑛(◡(𝐹‘𝑚) “ 𝐴) |
| 66 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑛(ℎ‘𝑚) |
| 67 | 62 | nfdm 5367 |
. . . . . . 7
⊢
Ⅎ𝑛dom
(𝐹‘𝑚) |
| 68 | 66, 67 | nfin 3820 |
. . . . . 6
⊢
Ⅎ𝑛((ℎ‘𝑚) ∩ dom (𝐹‘𝑚)) |
| 69 | 65, 68 | nfeq 2776 |
. . . . 5
⊢
Ⅎ𝑛(◡(𝐹‘𝑚) “ 𝐴) = ((ℎ‘𝑚) ∩ dom (𝐹‘𝑚)) |
| 70 | | nfv 1843 |
. . . . 5
⊢
Ⅎ𝑚(◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)) |
| 71 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) |
| 72 | 71 | cnveqd 5298 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ◡(𝐹‘𝑚) = ◡(𝐹‘𝑛)) |
| 73 | 72 | imaeq1d 5465 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (◡(𝐹‘𝑚) “ 𝐴) = (◡(𝐹‘𝑛) “ 𝐴)) |
| 74 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (ℎ‘𝑚) = (ℎ‘𝑛)) |
| 75 | 71 | dmeqd 5326 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → dom (𝐹‘𝑚) = dom (𝐹‘𝑛)) |
| 76 | 74, 75 | ineq12d 3815 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((ℎ‘𝑚) ∩ dom (𝐹‘𝑚)) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛))) |
| 77 | 73, 76 | eqeq12d 2637 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((◡(𝐹‘𝑚) “ 𝐴) = ((ℎ‘𝑚) ∩ dom (𝐹‘𝑚)) ↔ (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) |
| 78 | 69, 70, 77 | cbvral 3167 |
. . . 4
⊢
(∀𝑚 ∈
𝑍 (◡(𝐹‘𝑚) “ 𝐴) = ((ℎ‘𝑚) ∩ dom (𝐹‘𝑚)) ↔ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛))) |
| 79 | 78 | anbi2i 730 |
. . 3
⊢ ((ℎ:𝑍⟶𝑆 ∧ ∀𝑚 ∈ 𝑍 (◡(𝐹‘𝑚) “ 𝐴) = ((ℎ‘𝑚) ∩ dom (𝐹‘𝑚))) ↔ (ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) |
| 80 | 79 | exbii 1774 |
. 2
⊢
(∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑚 ∈ 𝑍 (◡(𝐹‘𝑚) “ 𝐴) = ((ℎ‘𝑚) ∩ dom (𝐹‘𝑚))) ↔ ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) |
| 81 | 59, 80 | sylib 208 |
1
⊢ (𝜑 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) |