![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsuplem3 | Structured version Visualization version GIF version |
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
smfsuplem3.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
smfsuplem3.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
smfsuplem3.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfsuplem3.f | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
smfsuplem3.d | ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} |
smfsuplem3.g | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
Ref | Expression |
---|---|
smfsuplem3 | ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1843 | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | smfsuplem3.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | smfsuplem3.d | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} | |
4 | ssrab2 3687 | . . . . 5 ⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} ⊆ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) | |
5 | 3, 4 | eqsstri 3635 | . . . 4 ⊢ 𝐷 ⊆ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
7 | smfsuplem3.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
8 | uzid 11702 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
10 | smfsuplem3.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
11 | 9, 10 | syl6eleqr 2712 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
12 | fveq2 6191 | . . . . 5 ⊢ (𝑛 = 𝑀 → (𝐹‘𝑛) = (𝐹‘𝑀)) | |
13 | 12 | dmeqd 5326 | . . . 4 ⊢ (𝑛 = 𝑀 → dom (𝐹‘𝑛) = dom (𝐹‘𝑀)) |
14 | smfsuplem3.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
15 | 14, 11 | ffvelrnd 6360 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑀) ∈ (SMblFn‘𝑆)) |
16 | eqid 2622 | . . . . 5 ⊢ dom (𝐹‘𝑀) = dom (𝐹‘𝑀) | |
17 | 2, 15, 16 | smfdmss 40942 | . . . 4 ⊢ (𝜑 → dom (𝐹‘𝑀) ⊆ ∪ 𝑆) |
18 | 11, 13, 17 | iinssd 39314 | . . 3 ⊢ (𝜑 → ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ⊆ ∪ 𝑆) |
19 | 6, 18 | sstrd 3613 | . 2 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
20 | nfv 1843 | . . . 4 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝐷) | |
21 | 11 | ne0d 39308 | . . . . 5 ⊢ (𝜑 → 𝑍 ≠ ∅) |
22 | 21 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑍 ≠ ∅) |
23 | 2 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
24 | 14 | ffvelrnda 6359 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
25 | eqid 2622 | . . . . . . 7 ⊢ dom (𝐹‘𝑛) = dom (𝐹‘𝑛) | |
26 | 23, 24, 25 | smff 40941 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
27 | 26 | adantlr 751 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
28 | iinss2 4572 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑍 → ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ⊆ dom (𝐹‘𝑛)) | |
29 | 28 | adantl 482 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ⊆ dom (𝐹‘𝑛)) |
30 | 5 | sseli 3599 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
31 | 30 | adantr 481 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
32 | 29, 31 | sseldd 3604 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
33 | 32 | adantll 750 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
34 | 27, 33 | ffvelrnd 6360 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
35 | 3 | rabeq2i 3197 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦)) |
36 | 35 | simprbi 480 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
37 | 36 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
38 | 20, 22, 34, 37 | suprclrnmpt 39466 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ∈ ℝ) |
39 | smfsuplem3.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | |
40 | 38, 39 | fmptd 6385 | . 2 ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) |
41 | 7 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑀 ∈ ℤ) |
42 | 2 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
43 | 14 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
44 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
45 | 41, 10, 42, 43, 3, 39, 44 | smfsuplem2 41018 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐺 “ (-∞(,]𝑎)) ∈ (𝑆 ↾t 𝐷)) |
46 | 1, 2, 19, 40, 45 | issmfle2d 41015 | 1 ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 {crab 2916 ⊆ wss 3574 ∅c0 3915 ∪ cuni 4436 ∩ ciin 4521 class class class wbr 4653 ↦ cmpt 4729 dom cdm 5114 ran crn 5115 ⟶wf 5884 ‘cfv 5888 supcsup 8346 ℝcr 9935 < clt 10074 ≤ cle 10075 ℤcz 11377 ℤ≥cuz 11687 SAlgcsalg 40528 SMblFncsmblfn 40909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cc 9257 ax-ac2 9285 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-ac 8939 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-ioo 12179 df-ioc 12180 df-ico 12181 df-fl 12593 df-rest 16083 df-topgen 16104 df-top 20699 df-bases 20750 df-salg 40529 df-salgen 40533 df-smblfn 40910 |
This theorem is referenced by: smfsup 41020 |
Copyright terms: Public domain | W3C validator |