Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem3 Structured version   Visualization version   GIF version

Theorem smfsuplem3 41019
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem3.m (𝜑𝑀 ∈ ℤ)
smfsuplem3.z 𝑍 = (ℤ𝑀)
smfsuplem3.s (𝜑𝑆 ∈ SAlg)
smfsuplem3.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem3.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem3.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsuplem3 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝑛,𝑀   𝑆,𝑛,𝑦   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑦,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦)

Proof of Theorem smfsuplem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . 2 𝑎𝜑
2 smfsuplem3.s . 2 (𝜑𝑆 ∈ SAlg)
3 smfsuplem3.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
4 ssrab2 3687 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑛𝑍 dom (𝐹𝑛)
53, 4eqsstri 3635 . . . 4 𝐷 𝑛𝑍 dom (𝐹𝑛)
65a1i 11 . . 3 (𝜑𝐷 𝑛𝑍 dom (𝐹𝑛))
7 smfsuplem3.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
8 uzid 11702 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
97, 8syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
10 smfsuplem3.z . . . . 5 𝑍 = (ℤ𝑀)
119, 10syl6eleqr 2712 . . . 4 (𝜑𝑀𝑍)
12 fveq2 6191 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1312dmeqd 5326 . . . 4 (𝑛 = 𝑀 → dom (𝐹𝑛) = dom (𝐹𝑀))
14 smfsuplem3.f . . . . . 6 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1514, 11ffvelrnd 6360 . . . . 5 (𝜑 → (𝐹𝑀) ∈ (SMblFn‘𝑆))
16 eqid 2622 . . . . 5 dom (𝐹𝑀) = dom (𝐹𝑀)
172, 15, 16smfdmss 40942 . . . 4 (𝜑 → dom (𝐹𝑀) ⊆ 𝑆)
1811, 13, 17iinssd 39314 . . 3 (𝜑 𝑛𝑍 dom (𝐹𝑛) ⊆ 𝑆)
196, 18sstrd 3613 . 2 (𝜑𝐷 𝑆)
20 nfv 1843 . . . 4 𝑛(𝜑𝑥𝐷)
2111ne0d 39308 . . . . 5 (𝜑𝑍 ≠ ∅)
2221adantr 481 . . . 4 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
232adantr 481 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
2414ffvelrnda 6359 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
25 eqid 2622 . . . . . . 7 dom (𝐹𝑛) = dom (𝐹𝑛)
2623, 24, 25smff 40941 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2726adantlr 751 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
28 iinss2 4572 . . . . . . . 8 (𝑛𝑍 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
2928adantl 482 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
305sseli 3599 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
3130adantr 481 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
3229, 31sseldd 3604 . . . . . 6 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3332adantll 750 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3427, 33ffvelrnd 6360 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
353rabeq2i 3197 . . . . . 6 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3635simprbi 480 . . . . 5 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3736adantl 482 . . . 4 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3820, 22, 34, 37suprclrnmpt 39466 . . 3 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
39 smfsuplem3.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
4038, 39fmptd 6385 . 2 (𝜑𝐺:𝐷⟶ℝ)
417adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
422adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
4314adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝑍⟶(SMblFn‘𝑆))
44 simpr 477 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
4541, 10, 42, 43, 3, 39, 44smfsuplem2 41018 . 2 ((𝜑𝑎 ∈ ℝ) → (𝐺 “ (-∞(,]𝑎)) ∈ (𝑆t 𝐷))
461, 2, 19, 40, 45issmfle2d 41015 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915   cuni 4436   ciin 4521   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  wf 5884  cfv 5888  supcsup 8346  cr 9935   < clt 10074  cle 10075  cz 11377  cuz 11687  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ioc 12180  df-ico 12181  df-fl 12593  df-rest 16083  df-topgen 16104  df-top 20699  df-bases 20750  df-salg 40529  df-salgen 40533  df-smblfn 40910
This theorem is referenced by:  smfsup  41020
  Copyright terms: Public domain W3C validator