MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem9 Structured version   Visualization version   GIF version

Theorem axsegconlem9 25805
Description: Lemma for axsegcon 25807. Show that 𝐵𝐹 is congruent to 𝐶𝐷. (Contributed by Scott Fenton, 19-Sep-2013.)
Hypotheses
Ref Expression
axsegconlem2.1 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
axsegconlem7.2 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)
axsegconlem8.3 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)))
Assertion
Ref Expression
axsegconlem9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐹𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐷,𝑝   𝑁,𝑝   𝐴,𝑖,𝑘   𝐵,𝑖,𝑘   𝐶,𝑖,𝑘   𝐷,𝑖,𝑘   𝑖,𝑁,𝑘   𝑆,𝑖,𝑘   𝑇,𝑖,𝑘   𝑖,𝑝
Allowed substitution hints:   𝑆(𝑝)   𝑇(𝑝)   𝐹(𝑖,𝑘,𝑝)

Proof of Theorem axsegconlem9
StepHypRef Expression
1 fveq2 6191 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
21oveq2d 6666 . . . . . . . . . . 11 (𝑘 = 𝑖 → (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) = (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)))
3 fveq2 6191 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
43oveq2d 6666 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((√‘𝑇) · (𝐴𝑘)) = ((√‘𝑇) · (𝐴𝑖)))
52, 4oveq12d 6668 . . . . . . . . . 10 (𝑘 = 𝑖 → ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) = ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))))
65oveq1d 6665 . . . . . . . . 9 (𝑘 = 𝑖 → (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆)))
7 axsegconlem8.3 . . . . . . . . 9 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑘)) − ((√‘𝑇) · (𝐴𝑘))) / (√‘𝑆)))
8 ovex 6678 . . . . . . . . 9 (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆)) ∈ V
96, 7, 8fvmpt 6282 . . . . . . . 8 (𝑖 ∈ (1...𝑁) → (𝐹𝑖) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆)))
109adantl 482 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆)))
1110oveq2d 6666 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) − (𝐹𝑖)) = ((𝐵𝑖) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆))))
12 axsegconlem2.1 . . . . . . . . . . . . 13 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
1312axsegconlem4 25800 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ)
14133adant3 1081 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → (√‘𝑆) ∈ ℝ)
1514ad2antrr 762 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ∈ ℝ)
16 simpl2 1065 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
17 fveere 25781 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
1816, 17sylan 488 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
1915, 18remulcld 10070 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐵𝑖)) ∈ ℝ)
2019recnd 10068 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) · (𝐵𝑖)) ∈ ℂ)
21 axsegconlem7.2 . . . . . . . . . . . . . 14 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)
2221axsegconlem4 25800 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (√‘𝑇) ∈ ℝ)
23 readdcl 10019 . . . . . . . . . . . . 13 (((√‘𝑆) ∈ ℝ ∧ (√‘𝑇) ∈ ℝ) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ)
2414, 22, 23syl2an 494 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ)
2524adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ∈ ℝ)
2625, 18remulcld 10070 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) ∈ ℝ)
2722ad2antlr 763 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑇) ∈ ℝ)
28 simpl1 1064 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
29 fveere 25781 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3028, 29sylan 488 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3127, 30remulcld 10070 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (𝐴𝑖)) ∈ ℝ)
3226, 31resubcld 10458 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) ∈ ℝ)
3332recnd 10068 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) ∈ ℂ)
3415recnd 10068 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ∈ ℂ)
3512axsegconlem6 25802 . . . . . . . . . 10 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 0 < (√‘𝑆))
3635gt0ne0d 10592 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → (√‘𝑆) ≠ 0)
3736ad2antrr 762 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑆) ≠ 0)
3820, 33, 34, 37divsubdird 10840 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) · (𝐵𝑖)) − ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖)))) / (√‘𝑆)) = ((((√‘𝑆) · (𝐵𝑖)) / (√‘𝑆)) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆))))
3926recnd 10068 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) ∈ ℂ)
4031recnd 10068 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (𝐴𝑖)) ∈ ℂ)
4120, 39, 40subsubd 10420 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) · (𝐵𝑖)) − ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖)))) = ((((√‘𝑆) · (𝐵𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖))) + ((√‘𝑇) · (𝐴𝑖))))
4227recnd 10068 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (√‘𝑇) ∈ ℂ)
4318renegcld 10457 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → -(𝐵𝑖) ∈ ℝ)
4443recnd 10068 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → -(𝐵𝑖) ∈ ℂ)
4530recnd 10068 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
4642, 44, 45adddid 10064 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (-(𝐵𝑖) + (𝐴𝑖))) = (((√‘𝑇) · -(𝐵𝑖)) + ((√‘𝑇) · (𝐴𝑖))))
4744, 45addcomd 10238 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (-(𝐵𝑖) + (𝐴𝑖)) = ((𝐴𝑖) + -(𝐵𝑖)))
4818recnd 10068 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
4945, 48negsubd 10398 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) + -(𝐵𝑖)) = ((𝐴𝑖) − (𝐵𝑖)))
5047, 49eqtrd 2656 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (-(𝐵𝑖) + (𝐴𝑖)) = ((𝐴𝑖) − (𝐵𝑖)))
5150oveq2d 6666 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · (-(𝐵𝑖) + (𝐴𝑖))) = ((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))))
5225recnd 10068 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) + (√‘𝑇)) ∈ ℂ)
5352, 34negsubdi2d 10408 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → -(((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = ((√‘𝑆) − ((√‘𝑆) + (√‘𝑇))))
5434, 42pncan2d 10394 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = (√‘𝑇))
5554negeqd 10275 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → -(((√‘𝑆) + (√‘𝑇)) − (√‘𝑆)) = -(√‘𝑇))
5653, 55eqtr3d 2658 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆) − ((√‘𝑆) + (√‘𝑇))) = -(√‘𝑇))
5756oveq1d 6665 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) − ((√‘𝑆) + (√‘𝑇))) · (𝐵𝑖)) = (-(√‘𝑇) · (𝐵𝑖)))
5834, 52, 48subdird 10487 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) − ((√‘𝑆) + (√‘𝑇))) · (𝐵𝑖)) = (((√‘𝑆) · (𝐵𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖))))
59 mulneg12 10468 . . . . . . . . . . . . 13 (((√‘𝑇) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → (-(√‘𝑇) · (𝐵𝑖)) = ((√‘𝑇) · -(𝐵𝑖)))
6042, 48, 59syl2anc 693 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (-(√‘𝑇) · (𝐵𝑖)) = ((√‘𝑇) · -(𝐵𝑖)))
6157, 58, 603eqtr3rd 2665 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · -(𝐵𝑖)) = (((√‘𝑆) · (𝐵𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖))))
6261oveq1d 6665 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · -(𝐵𝑖)) + ((√‘𝑇) · (𝐴𝑖))) = ((((√‘𝑆) · (𝐵𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖))) + ((√‘𝑇) · (𝐴𝑖))))
6346, 51, 623eqtr3rd 2665 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) · (𝐵𝑖)) − (((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖))) + ((√‘𝑇) · (𝐴𝑖))) = ((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))))
6441, 63eqtrd 2656 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) · (𝐵𝑖)) − ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖)))) = ((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))))
6564oveq1d 6665 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) · (𝐵𝑖)) − ((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖)))) / (√‘𝑆)) = (((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) / (√‘𝑆)))
6648, 34, 37divcan3d 10806 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑆) · (𝐵𝑖)) / (√‘𝑆)) = (𝐵𝑖))
6766oveq1d 6665 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑆) · (𝐵𝑖)) / (√‘𝑆)) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆))) = ((𝐵𝑖) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆))))
6838, 65, 673eqtr3rd 2665 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) − (((((√‘𝑆) + (√‘𝑇)) · (𝐵𝑖)) − ((√‘𝑇) · (𝐴𝑖))) / (√‘𝑆))) = (((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) / (√‘𝑆)))
6911, 68eqtrd 2656 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) − (𝐹𝑖)) = (((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) / (√‘𝑆)))
7069oveq1d 6665 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝐹𝑖))↑2) = ((((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) / (√‘𝑆))↑2))
7130, 18resubcld 10458 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℝ)
7227, 71remulcld 10070 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) ∈ ℝ)
7372recnd 10068 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) ∈ ℂ)
7473, 34, 37sqdivd 13021 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖))) / (√‘𝑆))↑2) = ((((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖)))↑2) / ((√‘𝑆)↑2)))
7571recnd 10068 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) − (𝐵𝑖)) ∈ ℂ)
7642, 75sqmuld 13020 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖)))↑2) = (((√‘𝑇)↑2) · (((𝐴𝑖) − (𝐵𝑖))↑2)))
7721axsegconlem2 25798 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 𝑇 ∈ ℝ)
7877ad2antlr 763 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑇 ∈ ℝ)
7921axsegconlem3 25799 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → 0 ≤ 𝑇)
8079ad2antlr 763 . . . . . . . 8 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ 𝑇)
81 resqrtth 13996 . . . . . . . 8 ((𝑇 ∈ ℝ ∧ 0 ≤ 𝑇) → ((√‘𝑇)↑2) = 𝑇)
8278, 80, 81syl2anc 693 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑇)↑2) = 𝑇)
8382oveq1d 6665 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇)↑2) · (((𝐴𝑖) − (𝐵𝑖))↑2)) = (𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)))
8476, 83eqtrd 2656 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖)))↑2) = (𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)))
8512axsegconlem2 25798 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑆 ∈ ℝ)
8612axsegconlem3 25799 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ 𝑆)
87 resqrtth 13996 . . . . . . . 8 ((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) → ((√‘𝑆)↑2) = 𝑆)
8885, 86, 87syl2anc 693 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((√‘𝑆)↑2) = 𝑆)
89883adant3 1081 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → ((√‘𝑆)↑2) = 𝑆)
9089ad2antrr 762 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((√‘𝑆)↑2) = 𝑆)
9184, 90oveq12d 6668 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((((√‘𝑇) · ((𝐴𝑖) − (𝐵𝑖)))↑2) / ((√‘𝑆)↑2)) = ((𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆))
9270, 74, 913eqtrd 2660 . . 3 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝐹𝑖))↑2) = ((𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆))
9392sumeq2dv 14433 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐹𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)((𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆))
94 fzfid 12772 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (1...𝑁) ∈ Fin)
9577adantl 482 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑇 ∈ ℝ)
9695recnd 10068 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑇 ∈ ℂ)
9771resqcld 13035 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℝ)
9897recnd 10068 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℂ)
9994, 96, 98fsummulc2 14516 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) = Σ𝑖 ∈ (1...𝑁)(𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)))
10099oveq1d 6665 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆) = (Σ𝑖 ∈ (1...𝑁)(𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆))
101 fveq2 6191 . . . . . . . . 9 (𝑝 = 𝑖 → (𝐶𝑝) = (𝐶𝑖))
102 fveq2 6191 . . . . . . . . 9 (𝑝 = 𝑖 → (𝐷𝑝) = (𝐷𝑖))
103101, 102oveq12d 6668 . . . . . . . 8 (𝑝 = 𝑖 → ((𝐶𝑝) − (𝐷𝑝)) = ((𝐶𝑖) − (𝐷𝑖)))
104103oveq1d 6665 . . . . . . 7 (𝑝 = 𝑖 → (((𝐶𝑝) − (𝐷𝑝))↑2) = (((𝐶𝑖) − (𝐷𝑖))↑2))
105104cbvsumv 14426 . . . . . 6 Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)
10621, 105eqtri 2644 . . . . 5 𝑇 = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)
107 fveq2 6191 . . . . . . . . 9 (𝑖 = 𝑝 → (𝐴𝑖) = (𝐴𝑝))
108 fveq2 6191 . . . . . . . . 9 (𝑖 = 𝑝 → (𝐵𝑖) = (𝐵𝑝))
109107, 108oveq12d 6668 . . . . . . . 8 (𝑖 = 𝑝 → ((𝐴𝑖) − (𝐵𝑖)) = ((𝐴𝑝) − (𝐵𝑝)))
110109oveq1d 6665 . . . . . . 7 (𝑖 = 𝑝 → (((𝐴𝑖) − (𝐵𝑖))↑2) = (((𝐴𝑝) − (𝐵𝑝))↑2))
111110cbvsumv 14426 . . . . . 6 Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
112111, 12eqtr4i 2647 . . . . 5 Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = 𝑆
113106, 112oveq12i 6662 . . . 4 (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) = (Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) · 𝑆)
114 eqid 2622 . . . . . . . . . 10 Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)
115114axsegconlem2 25798 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℝ)
1161153adant3 1081 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℝ)
117116adantr 481 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) ∈ ℝ)
11895, 117remulcld 10070 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) ∈ ℝ)
119118recnd 10068 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) ∈ ℂ)
120 eqid 2622 . . . . . . . 8 Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)
121120axsegconlem2 25798 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ∈ ℝ)
122121adantl 482 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ∈ ℝ)
123122recnd 10068 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ∈ ℂ)
124853adant3 1081 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 𝑆 ∈ ℝ)
125124adantr 481 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑆 ∈ ℝ)
126125recnd 10068 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑆 ∈ ℂ)
127863adant3 1081 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 0 ≤ 𝑆)
128 sqrt00 14004 . . . . . . . . 9 ((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) → ((√‘𝑆) = 0 ↔ 𝑆 = 0))
129128necon3bid 2838 . . . . . . . 8 ((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) → ((√‘𝑆) ≠ 0 ↔ 𝑆 ≠ 0))
130124, 127, 129syl2anc 693 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → ((√‘𝑆) ≠ 0 ↔ 𝑆 ≠ 0))
13136, 130mpbid 222 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 𝑆 ≠ 0)
132131adantr 481 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑆 ≠ 0)
133119, 123, 126, 132divmul3d 10835 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (((𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ↔ (𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) = (Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) · 𝑆)))
134113, 133mpbiri 248 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝑇 · Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
13578, 97remulcld 10070 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) ∈ ℝ)
136135recnd 10068 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) ∈ ℂ)
13794, 126, 136, 132fsumdivc 14518 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (Σ𝑖 ∈ (1...𝑁)(𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆) = Σ𝑖 ∈ (1...𝑁)((𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆))
138100, 134, 1373eqtr3rd 2665 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)((𝑇 · (((𝐴𝑖) − (𝐵𝑖))↑2)) / 𝑆) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
13993, 138eqtrd 2656 1 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐹𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  2c2 11070  ...cfz 12326  cexp 12860  csqrt 13973  Σcsu 14416  𝔼cee 25768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771
This theorem is referenced by:  axsegcon  25807
  Copyright terms: Public domain W3C validator