MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatid Structured version   Visualization version   GIF version

Theorem swrdccatid 13497
Description: A prefix of a concatenation of length of the first concatenated word is the first word itself. (Contributed by Alexander van der Vekens, 20-Sep-2018.)
Assertion
Ref Expression
swrdccatid ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (#‘𝐴)) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = 𝐴)

Proof of Theorem swrdccatid
StepHypRef Expression
1 3simpa 1058 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (#‘𝐴)) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 lencl 13324 . . . . 5 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℕ0)
3 lencl 13324 . . . . . 6 (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℕ0)
4 simplr 792 . . . . . . . . 9 ((((#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ 𝑁 = (#‘𝐴)) → (#‘𝐴) ∈ ℕ0)
5 eleq1 2689 . . . . . . . . . 10 (𝑁 = (#‘𝐴) → (𝑁 ∈ ℕ0 ↔ (#‘𝐴) ∈ ℕ0))
65adantl 482 . . . . . . . . 9 ((((#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ 𝑁 = (#‘𝐴)) → (𝑁 ∈ ℕ0 ↔ (#‘𝐴) ∈ ℕ0))
74, 6mpbird 247 . . . . . . . 8 ((((#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ 𝑁 = (#‘𝐴)) → 𝑁 ∈ ℕ0)
8 nn0addcl 11328 . . . . . . . . . 10 (((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0) → ((#‘𝐴) + (#‘𝐵)) ∈ ℕ0)
98ancoms 469 . . . . . . . . 9 (((#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) → ((#‘𝐴) + (#‘𝐵)) ∈ ℕ0)
109adantr 481 . . . . . . . 8 ((((#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ 𝑁 = (#‘𝐴)) → ((#‘𝐴) + (#‘𝐵)) ∈ ℕ0)
11 nn0re 11301 . . . . . . . . . . . . 13 ((#‘𝐴) ∈ ℕ0 → (#‘𝐴) ∈ ℝ)
1211anim1i 592 . . . . . . . . . . . 12 (((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0) → ((#‘𝐴) ∈ ℝ ∧ (#‘𝐵) ∈ ℕ0))
1312ancoms 469 . . . . . . . . . . 11 (((#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) → ((#‘𝐴) ∈ ℝ ∧ (#‘𝐵) ∈ ℕ0))
14 nn0addge1 11339 . . . . . . . . . . 11 (((#‘𝐴) ∈ ℝ ∧ (#‘𝐵) ∈ ℕ0) → (#‘𝐴) ≤ ((#‘𝐴) + (#‘𝐵)))
1513, 14syl 17 . . . . . . . . . 10 (((#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) → (#‘𝐴) ≤ ((#‘𝐴) + (#‘𝐵)))
1615adantr 481 . . . . . . . . 9 ((((#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ 𝑁 = (#‘𝐴)) → (#‘𝐴) ≤ ((#‘𝐴) + (#‘𝐵)))
17 breq1 4656 . . . . . . . . . 10 (𝑁 = (#‘𝐴) → (𝑁 ≤ ((#‘𝐴) + (#‘𝐵)) ↔ (#‘𝐴) ≤ ((#‘𝐴) + (#‘𝐵))))
1817adantl 482 . . . . . . . . 9 ((((#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ 𝑁 = (#‘𝐴)) → (𝑁 ≤ ((#‘𝐴) + (#‘𝐵)) ↔ (#‘𝐴) ≤ ((#‘𝐴) + (#‘𝐵))))
1916, 18mpbird 247 . . . . . . . 8 ((((#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ 𝑁 = (#‘𝐴)) → 𝑁 ≤ ((#‘𝐴) + (#‘𝐵)))
20 elfz2nn0 12431 . . . . . . . 8 (𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))) ↔ (𝑁 ∈ ℕ0 ∧ ((#‘𝐴) + (#‘𝐵)) ∈ ℕ0𝑁 ≤ ((#‘𝐴) + (#‘𝐵))))
217, 10, 19, 20syl3anbrc 1246 . . . . . . 7 ((((#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ∈ ℕ0) ∧ 𝑁 = (#‘𝐴)) → 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))))
2221exp31 630 . . . . . 6 ((#‘𝐵) ∈ ℕ0 → ((#‘𝐴) ∈ ℕ0 → (𝑁 = (#‘𝐴) → 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))))))
233, 22syl 17 . . . . 5 (𝐵 ∈ Word 𝑉 → ((#‘𝐴) ∈ ℕ0 → (𝑁 = (#‘𝐴) → 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))))))
242, 23syl5com 31 . . . 4 (𝐴 ∈ Word 𝑉 → (𝐵 ∈ Word 𝑉 → (𝑁 = (#‘𝐴) → 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))))))
25243imp 1256 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (#‘𝐴)) → 𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))))
26 eqid 2622 . . . 4 (#‘𝐴) = (#‘𝐴)
2726swrdccat3a 13494 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...((#‘𝐴) + (#‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁 ≤ (#‘𝐴), (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁 − (#‘𝐴))⟩)))))
281, 25, 27sylc 65 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (#‘𝐴)) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = if(𝑁 ≤ (#‘𝐴), (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁 − (#‘𝐴))⟩))))
292, 11syl 17 . . . . . 6 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℝ)
3029leidd 10594 . . . . 5 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ≤ (#‘𝐴))
31303ad2ant1 1082 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (#‘𝐴)) → (#‘𝐴) ≤ (#‘𝐴))
32 breq1 4656 . . . . 5 (𝑁 = (#‘𝐴) → (𝑁 ≤ (#‘𝐴) ↔ (#‘𝐴) ≤ (#‘𝐴)))
33323ad2ant3 1084 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (#‘𝐴)) → (𝑁 ≤ (#‘𝐴) ↔ (#‘𝐴) ≤ (#‘𝐴)))
3431, 33mpbird 247 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (#‘𝐴)) → 𝑁 ≤ (#‘𝐴))
3534iftrued 4094 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (#‘𝐴)) → if(𝑁 ≤ (#‘𝐴), (𝐴 substr ⟨0, 𝑁⟩), (𝐴 ++ (𝐵 substr ⟨0, (𝑁 − (#‘𝐴))⟩))) = (𝐴 substr ⟨0, 𝑁⟩))
36 swrdid 13428 . . . 4 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨0, (#‘𝐴)⟩) = 𝐴)
37363ad2ant1 1082 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (#‘𝐴)) → (𝐴 substr ⟨0, (#‘𝐴)⟩) = 𝐴)
38 opeq2 4403 . . . . . 6 (𝑁 = (#‘𝐴) → ⟨0, 𝑁⟩ = ⟨0, (#‘𝐴)⟩)
3938oveq2d 6666 . . . . 5 (𝑁 = (#‘𝐴) → (𝐴 substr ⟨0, 𝑁⟩) = (𝐴 substr ⟨0, (#‘𝐴)⟩))
4039eqeq1d 2624 . . . 4 (𝑁 = (#‘𝐴) → ((𝐴 substr ⟨0, 𝑁⟩) = 𝐴 ↔ (𝐴 substr ⟨0, (#‘𝐴)⟩) = 𝐴))
41403ad2ant3 1084 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (#‘𝐴)) → ((𝐴 substr ⟨0, 𝑁⟩) = 𝐴 ↔ (𝐴 substr ⟨0, (#‘𝐴)⟩) = 𝐴))
4237, 41mpbird 247 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (#‘𝐴)) → (𝐴 substr ⟨0, 𝑁⟩) = 𝐴)
4328, 35, 423eqtrd 2660 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (#‘𝐴)) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  ifcif 4086  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936   + caddc 9939  cle 10075  cmin 10266  0cn0 11292  ...cfz 12326  #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303
This theorem is referenced by:  ccats1swrdeqbi  13498  clwlkclwwlk2  26904  clwlksfoclwwlk  26963  numclwlk1lem2foalem  27222  numclwlk1lem2fo  27228
  Copyright terms: Public domain W3C validator