MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksfoclwwlk Structured version   Visualization version   GIF version

Theorem clwlksfoclwwlk 26963
Description: There is an onto function between the set of closed walks (defined as words) of length n and the set of closed walks of length n. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 2-May-2021.)
Hypotheses
Ref Expression
clwlksfclwwlk.1 𝐴 = (1st𝑐)
clwlksfclwwlk.2 𝐵 = (2nd𝑐)
clwlksfclwwlk.c 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
clwlksfclwwlk.f 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
Assertion
Ref Expression
clwlksfoclwwlk ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶onto→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝐺,𝑐   𝑁,𝑐   𝐶,𝑐   𝐹,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)

Proof of Theorem clwlksfoclwwlk
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwlksfclwwlk.1 . . 3 𝐴 = (1st𝑐)
2 clwlksfclwwlk.2 . . 3 𝐵 = (2nd𝑐)
3 clwlksfclwwlk.c . . 3 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
4 clwlksfclwwlk.f . . 3 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
51, 2, 3, 4clwlksfclwwlk 26962 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶⟶(𝑁 ClWWalksN 𝐺))
6 eqid 2622 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
76clwwlknbp 26885 . . . . 5 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))
87adantl 482 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))
9 prmnn 15388 . . . . . . . . 9 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
109ad2antlr 763 . . . . . . . 8 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → 𝑁 ∈ ℕ)
11 isclwwlksn 26882 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑤 ∈ (ClWWalks‘𝐺) ∧ (#‘𝑤) = 𝑁)))
1210, 11syl 17 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑤 ∈ (ClWWalks‘𝐺) ∧ (#‘𝑤) = 𝑁)))
13 fusgrusgr 26214 . . . . . . . . . . . . 13 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph )
14 usgruspgr 26073 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph )
1513, 14syl 17 . . . . . . . . . . . 12 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USPGraph )
1615adantr 481 . . . . . . . . . . 11 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐺 ∈ USPGraph )
1716adantr 481 . . . . . . . . . 10 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → 𝐺 ∈ USPGraph )
18 simprl 794 . . . . . . . . . 10 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → 𝑤 ∈ Word (Vtx‘𝐺))
19 eleq1 2689 . . . . . . . . . . . . . . 15 ((#‘𝑤) = 𝑁 → ((#‘𝑤) ∈ ℙ ↔ 𝑁 ∈ ℙ))
20 prmnn 15388 . . . . . . . . . . . . . . . 16 ((#‘𝑤) ∈ ℙ → (#‘𝑤) ∈ ℕ)
2120nnge1d 11063 . . . . . . . . . . . . . . 15 ((#‘𝑤) ∈ ℙ → 1 ≤ (#‘𝑤))
2219, 21syl6bir 244 . . . . . . . . . . . . . 14 ((#‘𝑤) = 𝑁 → (𝑁 ∈ ℙ → 1 ≤ (#‘𝑤)))
2322adantl 482 . . . . . . . . . . . . 13 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁) → (𝑁 ∈ ℙ → 1 ≤ (#‘𝑤)))
2423com12 32 . . . . . . . . . . . 12 (𝑁 ∈ ℙ → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁) → 1 ≤ (#‘𝑤)))
2524adantl 482 . . . . . . . . . . 11 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁) → 1 ≤ (#‘𝑤)))
2625imp 445 . . . . . . . . . 10 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → 1 ≤ (#‘𝑤))
27 eqid 2622 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
286, 27clwlkclwwlk2 26904 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑤)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ 𝑤 ∈ (ClWWalks‘𝐺)))
2917, 18, 26, 28syl3anc 1326 . . . . . . . . 9 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ 𝑤 ∈ (ClWWalks‘𝐺)))
3029bicomd 213 . . . . . . . 8 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (𝑤 ∈ (ClWWalks‘𝐺) ↔ ∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩)))
3130anbi1d 741 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → ((𝑤 ∈ (ClWWalks‘𝐺) ∧ (#‘𝑤) = 𝑁) ↔ (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ∧ (#‘𝑤) = 𝑁)))
3212, 31bitrd 268 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ∧ (#‘𝑤) = 𝑁)))
33 df-br 4654 . . . . . . . . 9 (𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺))
34 simpl 473 . . . . . . . . . . . . 13 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺))
359nnge1d 11063 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℙ → 1 ≤ 𝑁)
3635ad2antlr 763 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → 1 ≤ 𝑁)
37 breq2 4657 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑤) = 𝑁 → (1 ≤ (#‘𝑤) ↔ 1 ≤ 𝑁))
3837ad2antll 765 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (1 ≤ (#‘𝑤) ↔ 1 ≤ 𝑁))
3936, 38mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → 1 ≤ (#‘𝑤))
4018, 39jca 554 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑤)))
41 clwlkwlk 26671 . . . . . . . . . . . . . . . 16 (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (Walks‘𝐺))
42 wlklenvclwlk 26551 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (Walks‘𝐺) → (#‘𝑓) = (#‘𝑤)))
4340, 41, 42syl2im 40 . . . . . . . . . . . . . . 15 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → (#‘𝑓) = (#‘𝑤)))
4443impcom 446 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) → (#‘𝑓) = (#‘𝑤))
45 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
46 ovex 6678 . . . . . . . . . . . . . . . . . 18 (𝑤 ++ ⟨“(𝑤‘0)”⟩) ∈ V
4745, 46op1st 7176 . . . . . . . . . . . . . . . . 17 (1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = 𝑓
4847a1i 11 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = 𝑓)
4948fveq2d 6195 . . . . . . . . . . . . . . 15 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = (#‘𝑓))
5049adantl 482 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) → (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = (#‘𝑓))
51 eqcom 2629 . . . . . . . . . . . . . . . . 17 ((#‘𝑤) = 𝑁𝑁 = (#‘𝑤))
5251biimpi 206 . . . . . . . . . . . . . . . 16 ((#‘𝑤) = 𝑁𝑁 = (#‘𝑤))
5352ad2antll 765 . . . . . . . . . . . . . . 15 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → 𝑁 = (#‘𝑤))
5453adantl 482 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) → 𝑁 = (#‘𝑤))
5544, 50, 543eqtr4d 2666 . . . . . . . . . . . . 13 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) → (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = 𝑁)
561fveq2i 6194 . . . . . . . . . . . . . . . 16 (#‘𝐴) = (#‘(1st𝑐))
5756eqeq1i 2627 . . . . . . . . . . . . . . 15 ((#‘𝐴) = 𝑁 ↔ (#‘(1st𝑐)) = 𝑁)
58 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (1st𝑐) = (1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
5958fveq2d 6195 . . . . . . . . . . . . . . . 16 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (#‘(1st𝑐)) = (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
6059eqeq1d 2624 . . . . . . . . . . . . . . 15 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((#‘(1st𝑐)) = 𝑁 ↔ (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = 𝑁))
6157, 60syl5bb 272 . . . . . . . . . . . . . 14 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((#‘𝐴) = 𝑁 ↔ (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = 𝑁))
6261, 3elrab2 3366 . . . . . . . . . . . . 13 (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶 ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = 𝑁))
6334, 55, 62sylanbrc 698 . . . . . . . . . . . 12 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
6444adantr 481 . . . . . . . . . . . . . . . . . 18 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (#‘𝑓) = (#‘𝑤))
6564opeq2d 4409 . . . . . . . . . . . . . . . . 17 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨0, (#‘𝑓)⟩ = ⟨0, (#‘𝑤)⟩)
6665oveq2d 6666 . . . . . . . . . . . . . . . 16 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑤)⟩))
67 simpr 477 . . . . . . . . . . . . . . . . . 18 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺))
6843adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → (#‘𝑓) = (#‘𝑤)))
69 eqeq2 2633 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 = (#‘𝑤) → ((#‘𝑓) = 𝑁 ↔ (#‘𝑓) = (#‘𝑤)))
7069eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑤) = 𝑁 → ((#‘𝑓) = 𝑁 ↔ (#‘𝑓) = (#‘𝑤)))
7170imbi2d 330 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝑤) = 𝑁 → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → (#‘𝑓) = 𝑁) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → (#‘𝑓) = (#‘𝑤))))
7271ad2antll 765 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → (#‘𝑓) = 𝑁) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → (#‘𝑓) = (#‘𝑤))))
7372adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → (#‘𝑓) = 𝑁) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → (#‘𝑓) = (#‘𝑤))))
7468, 73mpbird 247 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → (#‘𝑓) = 𝑁))
7574imp 445 . . . . . . . . . . . . . . . . . 18 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (#‘𝑓) = 𝑁)
7647a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = 𝑓)
7776fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = (#‘𝑓))
7859, 77eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (#‘(1st𝑐)) = (#‘𝑓))
7978eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((#‘(1st𝑐)) = 𝑁 ↔ (#‘𝑓) = 𝑁))
8057, 79syl5bb 272 . . . . . . . . . . . . . . . . . . 19 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((#‘𝐴) = 𝑁 ↔ (#‘𝑓) = 𝑁))
8180, 3elrab2 3366 . . . . . . . . . . . . . . . . . 18 (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶 ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (#‘𝑓) = 𝑁))
8267, 75, 81sylanbrc 698 . . . . . . . . . . . . . . . . 17 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
83 ovex 6678 . . . . . . . . . . . . . . . . 17 ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩) ∈ V
8456opeq2i 4406 . . . . . . . . . . . . . . . . . . . 20 ⟨0, (#‘𝐴)⟩ = ⟨0, (#‘(1st𝑐))⟩
852, 84oveq12i 6662 . . . . . . . . . . . . . . . . . . 19 (𝐵 substr ⟨0, (#‘𝐴)⟩) = ((2nd𝑐) substr ⟨0, (#‘(1st𝑐))⟩)
86 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (2nd𝑐) = (2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
8759opeq2d 4409 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ⟨0, (#‘(1st𝑐))⟩ = ⟨0, (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))⟩)
8886, 87oveq12d 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((2nd𝑐) substr ⟨0, (#‘(1st𝑐))⟩) = ((2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) substr ⟨0, (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))⟩))
8945, 46op2nd 7177 . . . . . . . . . . . . . . . . . . . . 21 (2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = (𝑤 ++ ⟨“(𝑤‘0)”⟩)
9047fveq2i 6194 . . . . . . . . . . . . . . . . . . . . . 22 (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = (#‘𝑓)
9190opeq2i 4406 . . . . . . . . . . . . . . . . . . . . 21 ⟨0, (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))⟩ = ⟨0, (#‘𝑓)⟩
9289, 91oveq12i 6662 . . . . . . . . . . . . . . . . . . . 20 ((2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) substr ⟨0, (#‘(1st ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩)
9388, 92syl6eq 2672 . . . . . . . . . . . . . . . . . . 19 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((2nd𝑐) substr ⟨0, (#‘(1st𝑐))⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩))
9485, 93syl5eq 2668 . . . . . . . . . . . . . . . . . 18 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝐵 substr ⟨0, (#‘𝐴)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩))
9594, 4fvmptg 6280 . . . . . . . . . . . . . . . . 17 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶 ∧ ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩) ∈ V) → (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩))
9682, 83, 95sylancl 694 . . . . . . . . . . . . . . . 16 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑓)⟩))
9740ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑤)))
98 simpl 473 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑤)) → 𝑤 ∈ Word (Vtx‘𝐺))
99 wrdsymb1 13342 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑤)) → (𝑤‘0) ∈ (Vtx‘𝐺))
10099s1cld 13383 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑤)) → ⟨“(𝑤‘0)”⟩ ∈ Word (Vtx‘𝐺))
101 eqidd 2623 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑤)) → (#‘𝑤) = (#‘𝑤))
102 swrdccatid 13497 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑤‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = (#‘𝑤)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑤)⟩) = 𝑤)
10398, 100, 101, 102syl3anc 1326 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑤)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑤)⟩) = 𝑤)
104103eqcomd 2628 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑤)) → 𝑤 = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑤)⟩))
10597, 104syl 17 . . . . . . . . . . . . . . . 16 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → 𝑤 = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) substr ⟨0, (#‘𝑤)⟩))
10666, 96, 1053eqtr4rd 2667 . . . . . . . . . . . . . . 15 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
107106ex 450 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
108107adantr 481 . . . . . . . . . . . . 13 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
109 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝐹𝑐) = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
110109eqeq2d 2632 . . . . . . . . . . . . . . 15 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝑤 = (𝐹𝑐) ↔ 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
111110imbi2d 330 . . . . . . . . . . . . . 14 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))))
112111adantl 482 . . . . . . . . . . . . 13 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))))
113108, 112mpbird 247 . . . . . . . . . . . 12 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)))
11463, 113rspcimedv 3311 . . . . . . . . . . 11 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁))) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
115114ex 450 . . . . . . . . . 10 (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
116115pm2.43b 55 . . . . . . . . 9 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
11733, 116syl5bi 232 . . . . . . . 8 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
118117exlimdv 1861 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
119118adantrd 484 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → ((∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ∧ (#‘𝑤) = 𝑁) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
12032, 119sylbid 230 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁)) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
121120impancom 456 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑤) = 𝑁) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
1228, 121mpd 15 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))
123122ralrimiva 2966 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺)∃𝑐𝐶 𝑤 = (𝐹𝑐))
124 dffo3 6374 . 2 (𝐹:𝐶onto→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐶⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺)∃𝑐𝐶 𝑤 = (𝐹𝑐)))
1255, 123, 124sylanbrc 698 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶onto→(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cop 4183   class class class wbr 4653  cmpt 4729  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  0cc0 9936  1c1 9937  cle 10075  cn 11020  #chash 13117  Word cword 13291   ++ cconcat 13293  ⟨“cs1 13294   substr csubstr 13295  cprime 15385  Vtxcvtx 25874  iEdgciedg 25875   USPGraph cuspgr 26043   USGraph cusgr 26044   FinUSGraph cfusgr 26208  Walkscwlks 26492  ClWalkscclwlks 26666  ClWWalkscclwwlks 26875   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-wlks 26495  df-clwlks 26667  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  clwlksf1oclwwlk  26970
  Copyright terms: Public domain W3C validator