MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp Structured version   Visualization version   Unicode version

Theorem tngngp 22458
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp.t  |-  T  =  ( G toNrmGrp  N )
tngngp.x  |-  X  =  ( Base `  G
)
tngngp.m  |-  .-  =  ( -g `  G )
tngngp.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
tngngp  |-  ( N : X --> RR  ->  ( T  e. NrmGrp  <->  ( G  e. 
Grp  /\  A. x  e.  X  ( (
( N `  x
)  =  0  <->  x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x  .-  y ) )  <_ 
( ( N `  x )  +  ( N `  y ) ) ) ) ) )
Distinct variable groups:    x, y,  .-    x, N, y    x, T, y    x, X, y   
x,  .0. , y
Allowed substitution hints:    G( x, y)

Proof of Theorem tngngp
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngngp.t . . . . 5  |-  T  =  ( G toNrmGrp  N )
2 tngngp.x . . . . 5  |-  X  =  ( Base `  G
)
3 eqid 2622 . . . . 5  |-  ( dist `  T )  =  (
dist `  T )
41, 2, 3tngngp2 22456 . . . 4  |-  ( N : X --> RR  ->  ( T  e. NrmGrp  <->  ( G  e. 
Grp  /\  ( dist `  T )  e.  ( Met `  X ) ) ) )
54simprbda 653 . . 3  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  G  e.  Grp )
6 simplr 792 . . . . . . 7  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  T  e. NrmGrp )
7 simpr 477 . . . . . . . 8  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  x  e.  X )
8 fvex 6201 . . . . . . . . . . . 12  |-  ( Base `  G )  e.  _V
92, 8eqeltri 2697 . . . . . . . . . . 11  |-  X  e. 
_V
10 reex 10027 . . . . . . . . . . 11  |-  RR  e.  _V
11 fex2 7121 . . . . . . . . . . 11  |-  ( ( N : X --> RR  /\  X  e.  _V  /\  RR  e.  _V )  ->  N  e.  _V )
129, 10, 11mp3an23 1416 . . . . . . . . . 10  |-  ( N : X --> RR  ->  N  e.  _V )
1312ad2antrr 762 . . . . . . . . 9  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  N  e.  _V )
141, 2tngbas 22445 . . . . . . . . 9  |-  ( N  e.  _V  ->  X  =  ( Base `  T
) )
1513, 14syl 17 . . . . . . . 8  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  X  =  ( Base `  T )
)
167, 15eleqtrd 2703 . . . . . . 7  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  x  e.  ( Base `  T )
)
17 eqid 2622 . . . . . . . 8  |-  ( Base `  T )  =  (
Base `  T )
18 eqid 2622 . . . . . . . 8  |-  ( norm `  T )  =  (
norm `  T )
19 eqid 2622 . . . . . . . 8  |-  ( 0g
`  T )  =  ( 0g `  T
)
2017, 18, 19nmeq0 22422 . . . . . . 7  |-  ( ( T  e. NrmGrp  /\  x  e.  ( Base `  T
) )  ->  (
( ( norm `  T
) `  x )  =  0  <->  x  =  ( 0g `  T ) ) )
216, 16, 20syl2anc 693 . . . . . 6  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( (
( norm `  T ) `  x )  =  0  <-> 
x  =  ( 0g
`  T ) ) )
225adantr 481 . . . . . . . . 9  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  G  e.  Grp )
23 simpll 790 . . . . . . . . 9  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  N : X
--> RR )
241, 2, 10tngnm 22455 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  N : X --> RR )  ->  N  =  (
norm `  T )
)
2522, 23, 24syl2anc 693 . . . . . . . 8  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  N  =  ( norm `  T )
)
2625fveq1d 6193 . . . . . . 7  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( N `  x )  =  ( ( norm `  T
) `  x )
)
2726eqeq1d 2624 . . . . . 6  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( ( N `  x )  =  0  <->  ( ( norm `  T ) `  x )  =  0 ) )
28 tngngp.z . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
291, 28tng0 22447 . . . . . . . 8  |-  ( N  e.  _V  ->  .0.  =  ( 0g `  T ) )
3013, 29syl 17 . . . . . . 7  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  .0.  =  ( 0g `  T ) )
3130eqeq2d 2632 . . . . . 6  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( x  =  .0.  <->  x  =  ( 0g `  T ) ) )
3221, 27, 313bitr4d 300 . . . . 5  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( ( N `  x )  =  0  <->  x  =  .0.  ) )
33 simpllr 799 . . . . . . . 8  |-  ( ( ( ( N : X
--> RR  /\  T  e. NrmGrp
)  /\  x  e.  X )  /\  y  e.  X )  ->  T  e. NrmGrp )
3416adantr 481 . . . . . . . 8  |-  ( ( ( ( N : X
--> RR  /\  T  e. NrmGrp
)  /\  x  e.  X )  /\  y  e.  X )  ->  x  e.  ( Base `  T
) )
3515eleq2d 2687 . . . . . . . . 9  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( y  e.  X  <->  y  e.  (
Base `  T )
) )
3635biimpa 501 . . . . . . . 8  |-  ( ( ( ( N : X
--> RR  /\  T  e. NrmGrp
)  /\  x  e.  X )  /\  y  e.  X )  ->  y  e.  ( Base `  T
) )
37 eqid 2622 . . . . . . . . 9  |-  ( -g `  T )  =  (
-g `  T )
3817, 18, 37nmmtri 22426 . . . . . . . 8  |-  ( ( T  e. NrmGrp  /\  x  e.  ( Base `  T
)  /\  y  e.  ( Base `  T )
)  ->  ( ( norm `  T ) `  ( x ( -g `  T ) y ) )  <_  ( (
( norm `  T ) `  x )  +  ( ( norm `  T
) `  y )
) )
3933, 34, 36, 38syl3anc 1326 . . . . . . 7  |-  ( ( ( ( N : X
--> RR  /\  T  e. NrmGrp
)  /\  x  e.  X )  /\  y  e.  X )  ->  (
( norm `  T ) `  ( x ( -g `  T ) y ) )  <_  ( (
( norm `  T ) `  x )  +  ( ( norm `  T
) `  y )
) )
40 tngngp.m . . . . . . . . . . 11  |-  .-  =  ( -g `  G )
412, 15syl5eqr 2670 . . . . . . . . . . . 12  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( Base `  G )  =  (
Base `  T )
)
42 eqid 2622 . . . . . . . . . . . . . 14  |-  ( +g  `  G )  =  ( +g  `  G )
431, 42tngplusg 22446 . . . . . . . . . . . . 13  |-  ( N  e.  _V  ->  ( +g  `  G )  =  ( +g  `  T
) )
4413, 43syl 17 . . . . . . . . . . . 12  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( +g  `  G )  =  ( +g  `  T ) )
4541, 44grpsubpropd 17520 . . . . . . . . . . 11  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( -g `  G )  =  (
-g `  T )
)
4640, 45syl5eq 2668 . . . . . . . . . 10  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  .-  =  (
-g `  T )
)
4746oveqd 6667 . . . . . . . . 9  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( x  .-  y )  =  ( x ( -g `  T
) y ) )
4825, 47fveq12d 6197 . . . . . . . 8  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( N `  ( x  .-  y
) )  =  ( ( norm `  T
) `  ( x
( -g `  T ) y ) ) )
4948adantr 481 . . . . . . 7  |-  ( ( ( ( N : X
--> RR  /\  T  e. NrmGrp
)  /\  x  e.  X )  /\  y  e.  X )  ->  ( N `  ( x  .-  y ) )  =  ( ( norm `  T
) `  ( x
( -g `  T ) y ) ) )
5025fveq1d 6193 . . . . . . . . 9  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( N `  y )  =  ( ( norm `  T
) `  y )
)
5126, 50oveq12d 6668 . . . . . . . 8  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( ( N `  x )  +  ( N `  y ) )  =  ( ( ( norm `  T ) `  x
)  +  ( (
norm `  T ) `  y ) ) )
5251adantr 481 . . . . . . 7  |-  ( ( ( ( N : X
--> RR  /\  T  e. NrmGrp
)  /\  x  e.  X )  /\  y  e.  X )  ->  (
( N `  x
)  +  ( N `
 y ) )  =  ( ( (
norm `  T ) `  x )  +  ( ( norm `  T
) `  y )
) )
5339, 49, 523brtr4d 4685 . . . . . 6  |-  ( ( ( ( N : X
--> RR  /\  T  e. NrmGrp
)  /\  x  e.  X )  /\  y  e.  X )  ->  ( N `  ( x  .-  y ) )  <_ 
( ( N `  x )  +  ( N `  y ) ) )
5453ralrimiva 2966 . . . . 5  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  A. y  e.  X  ( N `  ( x  .-  y
) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )
5532, 54jca 554 . . . 4  |-  ( ( ( N : X --> RR  /\  T  e. NrmGrp )  /\  x  e.  X
)  ->  ( (
( N `  x
)  =  0  <->  x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x  .-  y ) )  <_ 
( ( N `  x )  +  ( N `  y ) ) ) )
5655ralrimiva 2966 . . 3  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  A. x  e.  X  ( ( ( N `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x 
.-  y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) ) )
575, 56jca 554 . 2  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( G  e.  Grp  /\  A. x  e.  X  ( ( ( N `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x 
.-  y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) ) ) )
58 simprl 794 . . 3  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\ 
A. x  e.  X  ( ( ( N `
 x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x  .-  y ) )  <_  ( ( N `  x )  +  ( N `  y ) ) ) ) )  ->  G  e.  Grp )
59 simpl 473 . . 3  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\ 
A. x  e.  X  ( ( ( N `
 x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x  .-  y ) )  <_  ( ( N `  x )  +  ( N `  y ) ) ) ) )  ->  N : X --> RR )
60 simpl 473 . . . . . 6  |-  ( ( ( ( N `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x 
.-  y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) )  -> 
( ( N `  x )  =  0  <-> 
x  =  .0.  )
)
6160ralimi 2952 . . . . 5  |-  ( A. x  e.  X  (
( ( N `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x 
.-  y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) )  ->  A. x  e.  X  ( ( N `  x )  =  0  <-> 
x  =  .0.  )
)
6261ad2antll 765 . . . 4  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\ 
A. x  e.  X  ( ( ( N `
 x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x  .-  y ) )  <_  ( ( N `  x )  +  ( N `  y ) ) ) ) )  ->  A. x  e.  X  ( ( N `  x )  =  0  <->  x  =  .0.  ) )
63 fveq2 6191 . . . . . . 7  |-  ( x  =  a  ->  ( N `  x )  =  ( N `  a ) )
6463eqeq1d 2624 . . . . . 6  |-  ( x  =  a  ->  (
( N `  x
)  =  0  <->  ( N `  a )  =  0 ) )
65 eqeq1 2626 . . . . . 6  |-  ( x  =  a  ->  (
x  =  .0.  <->  a  =  .0.  ) )
6664, 65bibi12d 335 . . . . 5  |-  ( x  =  a  ->  (
( ( N `  x )  =  0  <-> 
x  =  .0.  )  <->  ( ( N `  a
)  =  0  <->  a  =  .0.  ) ) )
6766rspccva 3308 . . . 4  |-  ( ( A. x  e.  X  ( ( N `  x )  =  0  <-> 
x  =  .0.  )  /\  a  e.  X
)  ->  ( ( N `  a )  =  0  <->  a  =  .0.  ) )
6862, 67sylan 488 . . 3  |-  ( ( ( N : X --> RR  /\  ( G  e. 
Grp  /\  A. x  e.  X  ( (
( N `  x
)  =  0  <->  x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x  .-  y ) )  <_ 
( ( N `  x )  +  ( N `  y ) ) ) ) )  /\  a  e.  X
)  ->  ( ( N `  a )  =  0  <->  a  =  .0.  ) )
69 simpr 477 . . . . . 6  |-  ( ( ( ( N `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x 
.-  y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) )  ->  A. y  e.  X  ( N `  ( x 
.-  y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) )
7069ralimi 2952 . . . . 5  |-  ( A. x  e.  X  (
( ( N `  x )  =  0  <-> 
x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x 
.-  y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) )  ->  A. x  e.  X  A. y  e.  X  ( N `  ( x 
.-  y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) )
7170ad2antll 765 . . . 4  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\ 
A. x  e.  X  ( ( ( N `
 x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x  .-  y ) )  <_  ( ( N `  x )  +  ( N `  y ) ) ) ) )  ->  A. x  e.  X  A. y  e.  X  ( N `  ( x  .-  y
) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )
72 oveq1 6657 . . . . . . . 8  |-  ( x  =  a  ->  (
x  .-  y )  =  ( a  .-  y ) )
7372fveq2d 6195 . . . . . . 7  |-  ( x  =  a  ->  ( N `  ( x  .-  y ) )  =  ( N `  (
a  .-  y )
) )
7463oveq1d 6665 . . . . . . 7  |-  ( x  =  a  ->  (
( N `  x
)  +  ( N `
 y ) )  =  ( ( N `
 a )  +  ( N `  y
) ) )
7573, 74breq12d 4666 . . . . . 6  |-  ( x  =  a  ->  (
( N `  (
x  .-  y )
)  <_  ( ( N `  x )  +  ( N `  y ) )  <->  ( N `  ( a  .-  y
) )  <_  (
( N `  a
)  +  ( N `
 y ) ) ) )
76 oveq2 6658 . . . . . . . 8  |-  ( y  =  b  ->  (
a  .-  y )  =  ( a  .-  b ) )
7776fveq2d 6195 . . . . . . 7  |-  ( y  =  b  ->  ( N `  ( a  .-  y ) )  =  ( N `  (
a  .-  b )
) )
78 fveq2 6191 . . . . . . . 8  |-  ( y  =  b  ->  ( N `  y )  =  ( N `  b ) )
7978oveq2d 6666 . . . . . . 7  |-  ( y  =  b  ->  (
( N `  a
)  +  ( N `
 y ) )  =  ( ( N `
 a )  +  ( N `  b
) ) )
8077, 79breq12d 4666 . . . . . 6  |-  ( y  =  b  ->  (
( N `  (
a  .-  y )
)  <_  ( ( N `  a )  +  ( N `  y ) )  <->  ( N `  ( a  .-  b
) )  <_  (
( N `  a
)  +  ( N `
 b ) ) ) )
8175, 80rspc2va 3323 . . . . 5  |-  ( ( ( a  e.  X  /\  b  e.  X
)  /\  A. x  e.  X  A. y  e.  X  ( N `  ( x  .-  y
) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )  ->  ( N `  ( a  .-  b
) )  <_  (
( N `  a
)  +  ( N `
 b ) ) )
8281ancoms 469 . . . 4  |-  ( ( A. x  e.  X  A. y  e.  X  ( N `  ( x 
.-  y ) )  <_  ( ( N `
 x )  +  ( N `  y
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( N `  ( a  .-  b
) )  <_  (
( N `  a
)  +  ( N `
 b ) ) )
8371, 82sylan 488 . . 3  |-  ( ( ( N : X --> RR  /\  ( G  e. 
Grp  /\  A. x  e.  X  ( (
( N `  x
)  =  0  <->  x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x  .-  y ) )  <_ 
( ( N `  x )  +  ( N `  y ) ) ) ) )  /\  ( a  e.  X  /\  b  e.  X ) )  -> 
( N `  (
a  .-  b )
)  <_  ( ( N `  a )  +  ( N `  b ) ) )
841, 2, 40, 28, 58, 59, 68, 83tngngpd 22457 . 2  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\ 
A. x  e.  X  ( ( ( N `
 x )  =  0  <->  x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x  .-  y ) )  <_  ( ( N `  x )  +  ( N `  y ) ) ) ) )  ->  T  e. NrmGrp )
8557, 84impbida 877 1  |-  ( N : X --> RR  ->  ( T  e. NrmGrp  <->  ( G  e. 
Grp  /\  A. x  e.  X  ( (
( N `  x
)  =  0  <->  x  =  .0.  )  /\  A. y  e.  X  ( N `  ( x  .-  y ) )  <_ 
( ( N `  x )  +  ( N `  y ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    <_ cle 10075   Basecbs 15857   +g cplusg 15941   distcds 15950   0gc0g 16100   Grpcgrp 17422   -gcsg 17424   Metcme 19732   normcnm 22381  NrmGrpcngp 22382   toNrmGrp ctng 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-tset 15960  df-ds 15964  df-rest 16083  df-topn 16084  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-tng 22389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator