MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgriswlk Structured version   Visualization version   GIF version

Theorem upgriswlk 26537
Description: Properties of a pair of functions to be a walk in a pseudograph. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 28-Oct-2021.)
Hypotheses
Ref Expression
upgriswlk.v 𝑉 = (Vtx‘𝐺)
upgriswlk.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgriswlk (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘   𝑘,𝑉

Proof of Theorem upgriswlk
StepHypRef Expression
1 upgriswlk.v . . 3 𝑉 = (Vtx‘𝐺)
2 upgriswlk.i . . 3 𝐼 = (iEdg‘𝐺)
31, 2iswlkg 26509 . 2 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
4 df-ifp 1013 . . . . . . 7 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
5 dfsn2 4190 . . . . . . . . . . . . 13 {(𝑃𝑘)} = {(𝑃𝑘), (𝑃𝑘)}
6 preq2 4269 . . . . . . . . . . . . 13 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃𝑘), (𝑃𝑘)} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
75, 6syl5eq 2668 . . . . . . . . . . . 12 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃𝑘)} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
87eqeq2d 2632 . . . . . . . . . . 11 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
98biimpa 501 . . . . . . . . . 10 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
109a1d 25 . . . . . . . . 9 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
11 eqid 2622 . . . . . . . . . . . . . 14 (Edg‘𝐺) = (Edg‘𝐺)
122, 11upgredginwlk 26532 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼) → (𝑘 ∈ (0..^(#‘𝐹)) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)))
1312adantrr 753 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) → (𝑘 ∈ (0..^(#‘𝐹)) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)))
1413imp 445 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺))
15 simp-4l 806 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → 𝐺 ∈ UPGraph )
16 simpr 477 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺))
1716adantr 481 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺))
18 simpr 477 . . . . . . . . . . . . . . 15 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
1918adantl 482 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
20 fvexd 6203 . . . . . . . . . . . . . . . . 17 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ∈ V)
21 fvexd 6203 . . . . . . . . . . . . . . . . 17 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃‘(𝑘 + 1)) ∈ V)
22 neqne 2802 . . . . . . . . . . . . . . . . 17 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
2320, 21, 223jca 1242 . . . . . . . . . . . . . . . 16 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2423adantr 481 . . . . . . . . . . . . . . 15 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2524adantl 482 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
261, 11upgredgpr 26037 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = (𝐼‘(𝐹𝑘)))
2715, 17, 19, 25, 26syl31anc 1329 . . . . . . . . . . . . 13 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = (𝐼‘(𝐹𝑘)))
2827eqcomd 2628 . . . . . . . . . . . 12 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
2928exp31 630 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → ((𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺) → ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
3014, 29mpd 15 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3130com12 32 . . . . . . . . 9 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3210, 31jaoi 394 . . . . . . . 8 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3332com12 32 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
344, 33syl5bi 232 . . . . . 6 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
35 ifpprsnss 4299 . . . . . 6 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
3634, 35impbid1 215 . . . . 5 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3736ralbidva 2985 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉)) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3837pm5.32da 673 . . 3 (𝐺 ∈ UPGraph → (((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
39 df-3an 1039 . . 3 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
40 df-3an 1039 . . 3 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4138, 39, 403bitr4g 303 . 2 (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
423, 41bitrd 268 1 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  if-wif 1012  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  wss 3574  {csn 4177  {cpr 4179   class class class wbr 4653  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UPGraph cupgr 25975  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-wlks 26495
This theorem is referenced by:  upgrwlkedg  26538  upgrwlkcompim  26539  upgrwlkvtxedg  26541  upgr2wlk  26564  upgrtrls  26598  upgristrl  26599  upgrwlkdvde  26633  usgr2wlkneq  26652  isclwlkupgr  26674  uspgrn2crct  26700  wlkiswwlks1  26753  wlkiswwlks2  26761  wlkiswwlksupgr2  26763  wlk2v2e  27017  upgriseupth  27067
  Copyright terms: Public domain W3C validator