MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2 26761
Description: A walk as word corresponds to the sequence of vertices in a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlks2 (𝐺 ∈ USPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Distinct variable groups:   𝑓,𝐺   𝑃,𝑓

Proof of Theorem wlkiswwlks2
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wwlkbp 26732 . . 3 (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)))
3 eqid 2622 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
41, 3iswwlks 26728 . . . 4 (𝑃 ∈ (WWalks‘𝐺) ↔ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5 ovex 6678 . . . . . . . . . . . . . . 15 (0..^((#‘𝑃) − 1)) ∈ V
6 mptexg 6484 . . . . . . . . . . . . . . 15 ((0..^((#‘𝑃) − 1)) ∈ V → (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ V)
75, 6mp1i 13 . . . . . . . . . . . . . 14 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) → (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ V)
8 simprr 796 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) → 𝐺 ∈ USPGraph )
9 simplr 792 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) → 𝑃 ∈ Word (Vtx‘𝐺))
10 hashge1 13178 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → 1 ≤ (#‘𝑃))
1110ancoms 469 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → 1 ≤ (#‘𝑃))
1211adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) → 1 ≤ (#‘𝑃))
138, 9, 123jca 1242 . . . . . . . . . . . . . . . . 17 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) → (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑃)))
1413adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) ∧ 𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑃)))
15 edgval 25941 . . . . . . . . . . . . . . . . . . . 20 (Edg‘𝐺) = ran (iEdg‘𝐺)
1615a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) ∧ 𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1716eleq2d 2687 . . . . . . . . . . . . . . . . . 18 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) ∧ 𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
1817ralbidv 2986 . . . . . . . . . . . . . . . . 17 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) ∧ 𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
1918biimpd 219 . . . . . . . . . . . . . . . 16 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) ∧ 𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)))
20 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
21 eqid 2622 . . . . . . . . . . . . . . . . 17 (iEdg‘𝐺) = (iEdg‘𝐺)
2220, 21wlkiswwlks2lem6 26760 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
2314, 19, 22sylsyld 61 . . . . . . . . . . . . . . 15 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) ∧ 𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
24 eleq1 2689 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑓 ∈ Word dom (iEdg‘𝐺) ↔ (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺)))
25 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (#‘𝑓) = (#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))
2625oveq2d 6666 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (0...(#‘𝑓)) = (0...(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})))))
2726feq2d 6031 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ↔ 𝑃:(0...(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺)))
2825oveq2d 6666 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (0..^(#‘𝑓)) = (0..^(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})))))
29 fveq1 6190 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (𝑓𝑖) = ((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖))
3029fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → ((iEdg‘𝐺)‘(𝑓𝑖)) = ((iEdg‘𝐺)‘((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)))
3130eqeq1d 2624 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((iEdg‘𝐺)‘((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
3228, 31raleqbidv 3152 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → (∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
3324, 27, 323anbi123d 1399 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → ((𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ ((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
3433imbi2d 330 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) → ((∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ↔ (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3534adantl 482 . . . . . . . . . . . . . . 15 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) ∧ 𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → ((∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ↔ (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))})) ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘(𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))))((iEdg‘𝐺)‘((𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))‘𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3623, 35mpbird 247 . . . . . . . . . . . . . 14 ((((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) ∧ 𝑓 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ ((iEdg‘𝐺)‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
377, 36spcimedv 3292 . . . . . . . . . . . . 13 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph )) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
3837ex 450 . . . . . . . . . . . 12 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph ) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
3938com23 86 . . . . . . . . . . 11 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph ) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
40393impia 1261 . . . . . . . . . 10 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ USPGraph ) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4140expd 452 . . . . . . . . 9 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝐺 ∈ USPGraph → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))))
4241impcom 446 . . . . . . . 8 (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝐺 ∈ USPGraph → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4342imp 445 . . . . . . 7 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph ) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
44 uspgrupgr 26071 . . . . . . . . . 10 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph )
451, 21upgriswlk 26537 . . . . . . . . . 10 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4644, 45syl 17 . . . . . . . . 9 (𝐺 ∈ USPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4746adantl 482 . . . . . . . 8 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph ) → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4847exbidv 1850 . . . . . . 7 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph ) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 ↔ ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
4943, 48mpbird 247 . . . . . 6 ((((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝐺 ∈ USPGraph ) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
5049ex 450 . . . . 5 (((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
5150ex 450 . . . 4 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃)))
524, 51syl5bi 232 . . 3 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃)))
532, 52mpcom 38 . 2 (𝑃 ∈ (WWalks‘𝐺) → (𝐺 ∈ USPGraph → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
5453com12 32 1 (𝐺 ∈ USPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  Vcvv 3200  c0 3915  {cpr 4179   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  cmin 10266  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UPGraph cupgr 25975   USPGraph cuspgr 26043  Walkscwlks 26492  WWalkscwwlks 26717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-wlks 26495  df-wwlks 26722
This theorem is referenced by:  wlkiswwlks  26762  wlklnwwlkln2  26769
  Copyright terms: Public domain W3C validator